This water heater must be installed and serviced by a qualified person.
Please leave this guide with the householder.

**WARNING: Plumber – Be Aware**
Use copper pipe **ONLY**. Plastic pipe **MUST NOT** be used.
It is a requirement of a solar water heater installation that all pipe work be in copper and not plastic, due to the effects of high water temperatures and pressures.
WARNING: Plumber – Be Aware

- The solar hot and solar cold pipe work between the solar storage tank and the solar collectors are supplied in the pipe kit. The supplied copper solar hot and solar cold pipes MUST BE used.

- If the solar water heater is installed either on a metal roof or in a trafficable area, such as on an accessible roof, then the solar hot and solar cold pipes must be insulated. The solar hot and solar cold pipes may be required to be insulated to comply with local regulations.

If insulation is required, the full length of the solar hot and solar cold pipes MUST BE insulated.

The insulation must:
- be of a closed cell type or equivalent, suitable for a solar water heating application and capable of withstanding the temperature of the closed circuit fluid generated by the solar collectors under stagnation conditions
- be at least 13 mm thick, however thicker insulation may be required to comply with the requirements of AS/NZS 3500.4
- be weatherproof and UV resistant
- be fitted up to and cover the connections on both the solar storage tank and the solar collectors.

The insulation will offer corrosion protection to a metal roof against water runoff over the copper pipe, assist in avoiding accidental contact with the solar pipe work as high temperature closed circuit fluid can flow from the solar collectors to the solar storage tank and also reduce pipe heat losses.

- Plastic pipe MUST NOT be used, as it will not withstand the temperature and pressure of the closed circuit fluid generated by the solar collectors under stagnation conditions. The solar collectors can generate extremely high heating fluid temperatures up to 150°C and high heating fluid pressure of 200 kPa. Plastic pipe cannot withstand these temperatures and pressures and MUST NOT be used. Failure of plastic pipe can lead to the release of high temperature heating fluid and cause severe water damage and flooding.

- There must be a continuous fall of a minimum 10° in the pipe work from the solar storage tank to the solar collectors. The highest point of the solar cold pipe and solar hot pipe must be where they connect to the solar storage tank, otherwise thermosiphoning will not occur.

- A non-return valve MUST BE installed on the cold water line to the solar storage tank AFTER the cold water branch to a temperature limiting device.

- The solar water heater, including the collector circuit and solar collectors, is to be isolated during the testing and commissioning of the heated water reticulation system in a building, in accordance with Clause 11.1 and 11.3 (a) of AS/NZS 3500.4.
About Your Water Heater ................................................................. 4
Regular Care .................................................................................. 10
Water Supplies ............................................................................. 12
Save A Service Call ....................................................................... 15
Installation – Solar Storage Tank ..................................................... 18
Installation – Solar Collectors .......................................................... 29
System Assembly .......................................................................... 32
Connections – Plumbing ................................................................. 41
Connections – Electrical ................................................................. 44
Multiple Installations .................................................................... 46
Commissioning ............................................................................ 48
Draining and Flushing The Solar Storage Tank ................................. 54
Draining the Closed Circuit Fluid .................................................... 53
Warranty ....................................................................................... 55
ABOUT YOUR WATER HEATER

WATER HEATER APPLICATION
This water heater is designed for use in a single family domestic dwelling for the purpose of heating potable water. Its use in an application other than this may shorten its life.

MODEL TYPE
Your Rheem® Premier Hilime closed circuit solar water heater is designed for both the solar collectors and the solar storage tank to be roof mounted. The solar storage tank has a Colorbond® jacket and is suitable for installation with either Rheem S200 or NPT200 solar collectors.

A 52C series system is suitable for installation in areas subject to frost or freeze conditions. Freeze conditions occur below 6°C. This system has NO WARRANTY for freeze damage if non Rheem approved closed circuit fluid has been used or if the closed circuit fluid has been incorrectly mixed (refer to “Terms of the Rheem Warranty” on page 55).

This water heater is designed to be installed as an electric boosted solar water heater with its booster heating unit connected to a power supply, however it may be installed with an in-series continuous flow or storage booster.

If this water heater is installed with an in-series booster, then the electric booster heating unit will not be connected to a power supply and the references to the electric booster heating unit, thermostat and boosting controls in this Guide will not be applicable to the installation. For information relating to the function and operation of the in-series booster, refer to the Owners Guide and Installation Instructions supplied with the booster water heater.

MAINS PRESSURE
The water heater is designed to operate at mains pressure by connecting directly to the mains water supply. If the mains supply pressure in your area exceeds that shown on page 20, a pressure limiting valve must be fitted. The supply pressure should be greater than 350 kPa for true mains pressure operation to be achieved.

SOLAR OPERATION
The Rheem Premier Hiline 52C series solar water heater is an indirect solar hot water system with a heat exchanger wrapped around the inner cylinder as part of the solar storage tank design. The vitreous enamel lined solar storage tank is installed on the roof directly coupled to the solar collectors.

The heat exchanger and solar collectors are connected by copper pipe work and form a closed circuit which is filled with closed circuit fluid. The closed circuit fluid is a solution of a blue, non-toxic food grade propylene glycol heat transfer fluid concentrate mixed with water. The heat transfer fluid concentrate is used to lower the freezing temperature of the closed circuit fluid and provides protection against freezing. The closed circuit also provides protection to the solar collectors and solar pipe work against harsh water chemistry.

The solar water heater uses the thermosiphon principle, without the need for a pump, circulator or sensors. The solar collectors absorb solar energy. The low-iron content solar glass allows more solar energy to pass through and be used to heat the collector’s absorber plate than conventional glass.

As the closed circuit fluid gains the sun’s heat from the absorber, the increase in temperature causes the fluid to rise through the fluid ways and up into the heat exchanger where it transfers its heat into the water in the solar storage tank. This allows cooler fluid from the heat exchanger to flow into the solar collectors to be heated by the sun’s energy.

Automatic safety controls are fitted to the water heater to provide safe and efficient operation.
ELECTRIC BOOSTING
Water stored in the solar storage tank can be heated by an electric booster heating unit. The booster heating unit is for heating the water at times of low solar energy gain, such as during very cloudy or rainy weather, or during the colder months.

The amount of water heated by the raised booster heating unit of the solar storage tank will be 150 litres (300 litre model), or 90 litres (180 litre model).

The water heater is more suited for the booster heating unit to be connected to either a continuous, or a time of use, or an extended Off-Peak (overnight and day) electricity supply. A timer can also be used to control the boosting periods and help maximise solar savings. Refer to “Booster Control” on page 7.

The booster heating unit may be connected to an Off-Peak (overnight) electricity supply, however this will only allow the booster to heat the water overnight. If this type of connection is considered, care must be taken to ensure there is sufficient boost capacity to meet the household’s full day and night hot water supply during periods of no or low solar gain, particularly in cold weather. Temperature redistribution (refer to page 16) is more evident with this type of electricity supply connection.

The booster heating unit is controlled by an electric thermostat. The thermostat and its over temperature cut out are mounted on the solar storage tank behind the side cover. If heating is required, the water is heated automatically when power is available.

HOW HOT SHOULD THE WATER BE?
The temperature the system will operate at under solar heating will depend upon the level of solar radiation available, orientation and inclination of the solar collectors, incoming cold water temperature and volume of hot water used.

Under normal household use and average operating conditions, the system may achieve a water temperature of approximately twice the maximum daily outside air temperature. During periods of high solar radiation conditions and low hot water consumption, the water temperature could exceed 85°C.

During periods of low solar energy gain, the water temperature can be boosted by the thermostatically controlled electric booster heating unit. Refer to “Booster Control” on page 7.

Rheem recommends the thermostat is set at 60°C to maximise solar contribution.

Note: AS 3498 requires that a water heater provides the means to inhibit the growth of Legionella bacteria in potable water. This water heater can satisfy this AS 3498 requirement provided the electric booster is energised for a sufficient period each day and the electric booster thermostat setting is 60°C or higher.

If this water heater is installed with an in-series continuous flow gas booster, then this requirement of AS 3498 can be satisfied provided the booster is energised, its preset outlet temperature setting is 70°C or higher and a remote temperature controller is not used.

If this water heater is installed with an in-series storage booster, then this requirement of AS 3498 can be satisfied provided the storage booster is energised and its thermostat setting is 60°C or higher.

HOTTER WATER INCREASES THE RISK OF SCALD INJURY
This water heater can deliver water at temperatures which can cause scalding. Check the water temperature before use, such as when entering a shower or filling a bath or basin, to ensure it is suitable for the application and will not cause scald injury.

We recommend and it may also be required by regulations that an approved temperature limiting device be fitted into the hot water pipe work to the bathroom and ensuite when this water heater is installed. This will keep the water temperature below 50°C at the bathroom and ensuite. The risk of scald injury will be reduced and still allow hotter water to the kitchen and laundry.
TEMPERATURE ADJUSTMENT
The water heater features a tradesperson adjustable thermostat. This requires a licensed tradesperson to make any temperature adjustments. The thermostat is factory set at 60°C. The thermostat has a maximum temperature setting of 70°C and a minimum temperature setting of 60°C.

We advise you have your electrician adjust the thermostat to the lowest setting which meets your needs, especially if there are young children or elderly people in the home. Refer to “Hotter Water Increases the Risk of Scald Injury” on page 5.

WARNING
This water heater is only intended to be operated by persons who have the experience or the knowledge and the capabilities to do so. This water heater is not intended to be operated by persons with reduced physical, sensory or mental capabilities i.e. the infirm, or by children. Children should be supervised to ensure they do not interfere with the water heater.

This water heater uses 240 V AC power for the electrically operated components. The removal of the side cover will expose 240 V wiring. It must only be removed by a qualified person.

Do not touch the pipe work connecting the solar storage tank and the solar collectors. Very high temperature closed circuit fluid can be generated by the solar collectors under certain conditions and this flows through the pipe work from the solar collectors to the solar storage tank.

Do not remove the closed circuit relief valve as there may be a very high scalding risk present. When operating in daylight, the heat exchange circuit will be pressurised and can contain superheated fluid and may contain steam. At other times, the circuit may be pressurised and contain high temperature fluid.

Should the water from a 52C series water heater appear blue or if blue closed circuit fluid is noticed around the base of the water heater or solar collectors, this indicates a leak of the closed circuit fluid from the heat exchanger or the solar collectors. The closed circuit fluid is non-toxic and not hazardous to health. Phone Rheem Service or their nearest Accredited Service Agent to arrange for an inspection.

SAFETY
This water heater is supplied with a thermostat, an over-temperature cut-out, and a combination temperature pressure relief valve. These devices must not be tampered with or removed. The water heater must not be operated unless each of these devices is fitted and is in working order.

The operation of the over-temperature energy cut-out on the thermostat indicates a possibly dangerous situation. If the over-temperature cut-out operates, it cannot be reset and the water heater must be serviced by a qualified person.

If the electrical conduit to the solar storage tank is damaged, it must be replaced by a qualified person in order to avoid a hazard. Phone Rheem Service or their nearest Accredited Service Agent to arrange for an inspection.

⚠️ Warning: For continued safety of this water heater it must be installed, operated and maintained in accordance with the Owner’s Guide and Installation Instructions.

The Rheem warranty may not cover faults if relief valves or other safety devices are tampered with or if the installation is not in accordance with these instructions.

PRECAUTIONS
The water heater must be maintained in accordance with the Owner’s Guide and Installation Instructions. Refer to “Regular Care” on page 10.

If this water heater is to be used where an uninterrupted hot water supply is necessary for your application or business you should ensure that you have back up redundancy within the hot water system design. This should ensure the continuity of hot water supply in the event that this water heater were to become inoperable for any reason. We recommend you seek advice from your plumber or specifier about your needs and building back up redundancy into your hot water supply system.
**BOOSTER CONTROL**

An isolating switch is installed in the electrical meter box for an electrically in-tank boosted solar storage tank. This should be left switched on to allow the booster heating unit to operate if required. The booster heating unit is for heating the water at times of low solar energy gain, such as during very cloudy or rainy weather, or during the colder months. The booster heating unit will only activate if heating is required and power is available from the switchboard. When the water is below the thermostat setting, the booster heating unit will turn on and heat the water. The booster heating unit will automatically turn off when the temperature of the water reaches the thermostat setting.

Leaving the isolating switch switched on will also provide a sufficient period of time each day for the booster heating unit to operate, if required, to satisfy the requirements of AS 3498.

The amount of water heated by the raised booster heating unit of the closed circuit solar storage tank will be 150 litres (300 litre model), or 90 litres (180 litre model).

**Timer Control Switch**

A suitably rated timer control switch can be installed and will help maximise energy savings with an electrically boosted solar water heater connected to a continuous, time of use or extended Off-Peak (overnight and day) electricity supply. Further information for an electrician on the recommended methods of wiring the timer are outlined in “Booster Control” on page 45.

**Programming the Timer**

Power must be available to the timer control switch before the booster heating unit can be activated. The timer control switch should be programmed:

- to suit the hot water consumption pattern of the household,
- with the end of the period to coincide with the commencement of the evening hot water usage,
  (a second period, such as prior to the morning hot water usage, may be necessary)
- to enable a boosting period of not less than the recommended continuous length of time for boosting, and
- for a period when power will be available to the timer.

**Note:** When daylight saving time applies, you may consider resetting the timer accordingly.

The recommended continuous length of time for boosting is:

<table>
<thead>
<tr>
<th>Model</th>
<th>Minimum winter cold water temperature</th>
<th>Temperature rise</th>
<th>Booster heating unit size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cool / temperate climate 10°C 50°C</td>
<td>2 ¼ hours 1 ½ hours 1 ¼ hour</td>
<td>2.4 kW 3.6 kW 4.8 kW</td>
</tr>
<tr>
<td></td>
<td>Temperate / sub tropical climate 15°C 45°C</td>
<td>2 hours 1 ½ hours 1 hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tropical climate 20°C 40°C</td>
<td>2 hours 1 ¼ hours 1 hour</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Cool / temperate climate 10°C 50°C</td>
<td>3 ¼ hours 2 ½ hours 2 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperate / sub tropical climate 15°C 45°C</td>
<td>3 ½ hours 2 ¼ hours 1 ¾ hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tropical climate 20°C 40°C</td>
<td>3 hours 2 hours 1 ½ hours</td>
<td></td>
</tr>
</tbody>
</table>

The recommended boosting periods are sufficient to allow the booster heating unit to heat up the boost volume of the solar storage tank to 60°C where the winter cold water temperatures do not fall below those shown. This may be necessary during periods of very low solar energy gain through the solar collectors, such as during constant rain or extremely cloudy weather, particularly in winter when the incoming cold water temperature is lower. The period will also provide a sufficient heat up time for the electric booster to operate, if required, to satisfy the requirements of AS 3498.

The booster heating unit will only activate if heating is required and power is available from the timer. When the water is below the thermostat setting, the booster heating unit will turn on and heat the water. The booster heating unit will automatically turn off either when the temperature of the water reaches the thermostat setting or at the end of the timer period, whichever comes first.
FREEZE PROTECTION
The 52C series solar water heaters are an indirect closed circuit solar hot water system with a heat exchanger in the solar storage tank. The heat exchanger and solar collectors form a closed circuit and are filled with closed circuit fluid. The closed circuit fluid is a solution of a blue, non-toxic food grade propylene glycol (heat transfer fluid concentrate) mixed with water. The heat transfer fluid concentrate is used to lower the freezing temperature of the closed circuit fluid and provides protection against freezing.

During installation, the heat transfer fluid concentrate is blended with water. The amount of heat transfer fluid concentrate supplied with this water heater provides protection in frost prone areas to a temperature of -7°C. If lower temperatures are anticipated, a greater concentration of heat transfer fluid concentrate in the closed circuit fluid will be required.

The system has NO WARRANTY for freeze damage if non Rheem approved heat transfer fluid concentrate has been used or if the closed circuit fluid has been incorrectly mixed (refer to “Terms of the Rheem Warranty” on page 55).

CLOSED CIRCUIT JACKET RELIEF VALVE
The tank’s closed circuit heat exchange jacket has a relief valve located in the vent pipe of the jacket. This relief valve is to prevent over-pressurisation of the closed circuit either due to incorrect filling or abnormal operating conditions.

During the water heater's first few months of operation, a small amount of fluid may discharge from the relief valve until the ideal closed circuit fluid volume is established. Discharges from the valve after this time could indicate the water heater is not operating efficiently. Under these circumstances phone Rheem Service or their nearest Accredited Service Agent to arrange for an inspection. Do not attempt to service the water heater yourself.

Do not remove the closed circuit relief valve as there may be a very high scalding risk present. When operating in daylight, the heat exchange circuit will be pressurised and can contain superheated fluid and may contain steam. At other times, it may be pressurised and contain high temperature fluid.

RAINWATER COLLECTION SYSTEM
If the 52C series solar water heater is installed on a section of roof which is part of a rainwater runoff collection system, then it is recommended this section of roof and its gutter be isolated from the rainwater collection system.

The closed circuit fluid acts as an anti-freeze agent and rust inhibitor, is non-toxic to humans and is harmless to the environment. However it does have an adverse effect on water stored in rainwater tanks. It will kill microscopic algae typically present in rainwater tanks and cause an unpleasant odour to develop. This will result in the rainwater tank having to be drained and cleaned.

If a rainwater tank does become contaminated with closed circuit fluid, then the following actions should be undertaken by a qualified person. Additional actions may be necessary to return the water supply to a consumable state.

- Correct the leak or spillage.
- Wash down the roof area where the spill or leak has occurred.
- Flush out the gutters and down pipes.
- Determine how the closed circuit fluid made its way into the rainwater tank. If the section of roof supporting the solar water heater is not isolated from the rainwater collection system, then this should be remedied.
- Empty the rainwater tank, and clean out all algae from the inside of the tank.
- Refill the rainwater tank with fresh water.

Refer to “Rainwater Collection System” on page 20 for additional information.
TO TURN OFF THE WATER HEATER
If you plan to be away from home for a few nights, we suggest you leave the water heater switched on.
If it is necessary to turn off the water heater:
- Switch off the electrical supply to the solar storage tank at the isolating switch.
- Close the cold water isolation valve at the inlet to the water heater.

TO TURN ON THE WATER HEATER
- Open the cold water isolation valve fully at the inlet to the water heater.
- Switch on the electrical supply to the solar storage tank at the isolating switch.
- Check and if required reset the timer, if one is installed.

GOING ON HOLIDAYS
If you plan to be away from home, conserve energy by switching the booster switch “OFF”. Refer to “To Turn Off The Water Heater” on page 9. Also if the system is not used for a period in excess of 4 weeks it is recommended the solar collectors be covered.

Care should be taken when returning from holidays and the collectors have not been covered. The water in the storage tank can be very hot.

HOW DO I KNOW IF THE WATER HEATER IS INSTALLED CORRECTLY?
Installation requirements are shown on pages 25 to 26. The water heater must be installed:
- by a qualified person, and
- in accordance with the installation instructions, and
- in compliance with Standards AS/NZS 3500.4, AS/NZS 3000 and all local codes and regulatory authority requirements.

In New Zealand, the installation must also conform to Clause G12 of the New Zealand Building Code.

VICTORIAN CUSTOMERS
Notice to Victorian Customers from the Victorian Plumbing Industry Commission. This water heater must be installed by a licensed person as required by the Victorian Building Act 1993.

Only a licensed person will give you a Compliance Certificate, showing that the work complies with all the relevant Standards. Only a licensed person will have insurance protecting their workmanship for 6 years. Make sure you use a licensed person to install this water heater and ask for your Compliance Certificate.

DOES THE WATER CHEMISTRY AFFECT THE WATER HEATER?
The water heater is suitable for most public water supplies, however some water chemistries may have detrimental effects on the water heater, its components and fittings. Refer to “Water Supplies” on page 12.

If you are in a known harsh water area or you are not sure of your water chemistry, have your water checked against the conditions described on pages 12 to 14.

HOW LONG WILL THE WATER HEATER LAST?
The water heater is supported by a manufacturer’s warranty (refer to page 55). There are a number of factors that will affect the length of service the water heater will provide. These include but are not limited to the water chemistry, the water pressure, the water temperature (inlet and outlet) and the water usage pattern. Refer to “Precautions” on page 6.
REGULAR CARE

MINOR SIX MONTH MAINTENANCE
It is recommended minor maintenance be performed every six months by the dwelling occupant.

The minor maintenance includes:

- If readily and safely accessible, operate the easing lever on the temperature pressure relief valve. It is very important the lever is raised and lowered gently. Refer to “Temperature Pressure Relief Valve” on page 11.

  If the relief valve lever is not readily and safely accessible, contact Rheem Service or their nearest Accredited Service Agent. Do not attempt to climb onto a non trafficable roof to operate the relief valve lever.

  **Warning:** Exercise care to avoid any splashing of water, as water discharged from the drain line will be hot. Stand clear of the drain line’s point of discharge when operating the valve’s lever.

- Operate the easing lever on the expansion control valve. It is very important the lever is raised and lowered gently. Refer to “Expansion Control Valve” on page 11.

MAJOR FIVE YEAR SERVICE
It is recommended a major five year service be conducted on the water heater. If an anode replacement is conducted sooner than a five year service, then the major service should coincide with the replacement.

**Warning:** Servicing of a water heater must only be carried out by a qualified person. Phone Rheem Service or their nearest Accredited Service Agent.

**Note:** The five year service and routine replacement of any components, such as the anode and relief valves, are not included in the Rheem warranty. A charge will be made for this work. Only genuine replacement parts should be used on this water heater.

The major service includes the following actions:

- Replace the temperature pressure relief valve.
- Inspect and flush the expansion control valve. If required, replace the valve.
- Inspect and if required, replace the anode.
  
  If the anode is not replaced, it should be replaced within three years of this service (refer to “Anode Inspection and Replacement” on page 13).
- Check the booster heating unit for excessive calcium build up or corrosion and replace if necessary.
- Check the closed circuit fluid level.
- Clean the collector glass.
- Visually check the unit for any potential problems.
- Drain and flush the solar storage tank if required.
- Drain, check and refill or replace (if required) the closed circuit fluid.
- Inspect all connections.

**Note:** The solar storage tank may need to be drained during this service. After the completion of the service, the solar storage tank will take some time to reheat the water by solar gain. Depending upon the power supply connection to the booster heating unit, hot water may not be available until the next day.
TEMPERATURE PRESSURE RELIEF VALVE
This valve is near the top of the water heater and is essential for its safe operation. It is possible for the valve to release a little water through the drain line during each heating period. This occurs as the water is heated and expands by approximately 1/50 of its volume.

Continuous leakage of water from the valve and its drain line may indicate a problem with the water heater (refer to “Temperature Pressure Relief Valve Running” on page 16).

⚠️ Warning: Never block the outlet of this valve or its drain line for any reason.

The easing lever on the temperature pressure relief valve should be operated once every six months. Refer to “Minor Six Month Maintenance” on page 10. It is very important the lever is raised and lowered gently.

⚠️ DANGER: Failure to do this may result in the water heater cylinder failing, or under certain circumstances, exploding.

⚠️ Warning: Exercise care to avoid any splashing of water, as water discharged from the drain line will be hot. Stand clear of the drain line’s point of discharge when operating the valve’s lever.

If water does not flow freely from the drain line when the lever is lifted, then the water heater must be checked. Phone Rheem Service or their nearest Accredited Service Agent to arrange for an inspection.

If the relief valve lever is not readily and safely accessible, contact Rheem Service or their nearest Accredited Service Agent. Do not attempt to climb onto a non trafficable roof to operate the relief valve lever.

The temperature pressure relief valve should be replaced at intervals not exceeding 5 years, or more frequently in areas where there is a high incidence of water deposits (refer to “Water Supplies” on page 12).

EXPANSION CONTROL VALVE
Rheem supply an expansion control valve with this thermosiphon water heater system and this is fitted to the cold water line to the water heater. In many areas, including South Australia, Western Australia and scaling water areas, it is mandatory this valve is installed. The expansion control valve may discharge a small quantity of water from its drain line during the heating period instead of the temperature pressure relief valve on the water heater.

The easing lever on the temperature pressure relief valve should be operated once every six months. Refer to “Minor Six Month Maintenance” on page 10. It is very important the lever is raised and lowered gently.

If water does not flow freely from the drain line when the lever is lifted, then the water heater should be checked by Rheem Service or their nearest Accredited Service Agent. The expansion control valve should be checked for performance or replaced at intervals not exceeding 5 years, or more frequently in areas where there is a high incidence of water deposits.

COLLECTOR GLASS
Ensure the glass on your solar collectors is free of dust, salt spray or any other matter which may reduce the effectiveness of the solar collectors. Rainfall should keep the collector adequately clean. If the collector glass becomes dirty, collector glass can be hosed down or if the solar collectors are accessible such as on a trafficable roof, wash the collector glass with water and a soft brush when the solar collectors are cool, such as early in the morning. In extremely dusty areas, such as mining towns and locations adjacent to dust forming plants, extra attention may need to be given to keeping the collector glass clean.

Have any trees trimmed which may shade the solar collectors.

Rheem solar collectors have passed the AS/NZS 2712 requirements for resistance to hailstone damage, so it is not normally necessary to fit a guard to a collector. Stone Guards are available to provide a level of protection to the collectors against vandalism or accidental damage. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.
This water heater must be installed in accordance with this advice to be covered by the Rheem warranty.

This water heater is manufactured to suit the water conditions of most public reticulated water supplies. However, there are some known water chemistries which can have detrimental effects on the water heater and its operation and/or life expectancy. If you are unsure of your water chemistry, you may be able to obtain information from your local water supply authority. This water heater should only be connected to a water supply which complies with these guidelines for the Rheem warranty to apply.

CHANGE OF WATER SUPPLY
The changing or alternating from one water supply to another can have a detrimental effect on the operation and/or life expectation of a water heater cylinder, a temperature pressure relief valve and a heating unit.

Where there is a changeover from one water supply to another, e.g., a rainwater tank supply, bore water supply, desalinated water supply, public reticulated water supply or water brought in from another supply, then water chemistry information should be sought from the supplier or it should be tested to ensure the water supply meets the requirements given in these guidelines for the Rheem warranty to apply.

ANODE
The vitreous enamel lined cylinder of the water heater is only covered by the Rheem warranty when the total dissolved solids (TDS) content in the water is less than 2500 mg/L and when the correct colour coded anode is used. If an incorrect colour coded anode is used in the water heater, any resultant faults will not be covered by the Rheem warranty. In addition, the use of an incorrect colour coded anode may shorten the life of the water heater cylinder.

The correct colour coded anode must be selected and fitted to the water heater in accordance with the following advice and the Anode Selection chart on page 12 for the Rheem warranty to apply to the water heater cylinder.

<table>
<thead>
<tr>
<th>Total Dissolved Solids (TDS) (mg/L)</th>
<th>Anode colour code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 400</td>
<td>Orange</td>
</tr>
<tr>
<td>400 – 600</td>
<td>Orange or Blue</td>
</tr>
<tr>
<td>600 – 2500</td>
<td>Blue</td>
</tr>
<tr>
<td>2500 +</td>
<td>Blue (no cylinder warranty)</td>
</tr>
</tbody>
</table>

The changing of an anode must be carried out by a qualified person.

Note: Some water analysis reports may state the conductivity of the water rather than the level of total dissolved solids. Conductivity, measured in microsiemens per centimetre (µS / cm), is directly proportional to the TDS content of the water. TDS, in mg / L, is approximately 70% of the conductivity in µS / cm.
ANODE INSPECTION AND REPLACEMENT

The anode installed in a vitreous enamel lined steel water heater cylinder will slowly dissipate whilst protecting the cylinder. The life of the cylinder may be extended by replacing the anode.

If the anode is not replaced during a five year service (refer to “Major Five Year Service” on page 10) then the maximum time after installation when the anode should be replaced is 8 years.

For water supplies which are either softened or desalinated, or where the water supply may alternate between a water tank and a reticulated public supply or another supply, it is recommended the anode be replaced within 5 years of installation.

CAUTION

If the water supply has a TDS greater than 600 mg/L and the orange anode has not been changed to a blue anode, there is the possibility the anode may become overactive and hydrogen gas could accumulate in the top of the water heater during long periods of no use.

If, under these conditions, the water heater has not been used for two or more weeks the following procedure should be carried out before using any electrical appliances (automatic washing machines and dishwashers) which are connected to the hot water supply.

The hydrogen, which is highly flammable, should be vented safely by opening a hot tap and allowing the water to flow. There should be no smoking or naked flame near the tap whilst it is turned on. Any hydrogen gas will be dissipated. This is indicated by an unusual spurting of the water from the tap. Once the water runs freely, any hydrogen in the system will have been released.

SATURATION INDEX

The saturation index is used as a measure of the water’s corrosive or scaling properties.

In a corrosive water supply, the water can attack copper parts and cause them to fail.

Where the saturation index is less than −1.0, the water is very corrosive and the Rheem warranty does not apply to a copper sheathed heating unit. A corrosion resistant heating unit must be used for the Rheem warranty to apply to the heating unit.

In a scaling water supply calcium carbonate is deposited out of the water onto any hot metallic surface.

Where the saturation index exceeds +0.40, the water is very scaling. An expansion control valve must be fitted on the cold water line after the non-return valve to protect and for the Rheem warranty to apply to the temperature pressure relief valve and water heater cylinder.

Where the saturation index exceeds +0.80, the Rheem warranty does not apply to a standard watts density heating unit. A low watts density heating unit must be used for the Rheem warranty to apply to the heating unit.

Water which is scaling may be treated with a water softening device to reduce the saturation index of the water.

Refer to the Saturation Index chart on page 14.

Contact Rheem Service or their nearest Accredited Service Agent if a replacement heating unit is required.

Refer to the cold water connection detail on page 41 for the position of the expansion control valve.
SUMMARY OF WATER CHEMISTRY ADVICE AFFECTING WARRANTY
The water heater, solar collectors and their components are not suitable for certain water chemistries. Those chemistries are listed below. If the 52C series water heater is connected at any time to a water supply with the following water chemistry, the Rheem warranty will not cover any resultant faults on the components listed below:

**Water Chemistry**
- Total Dissolved Solids (TDS) > 2500 mg/L
- Total Dissolved Solids (TDS) not suitable for anode type water heater cylinder
- Saturation Index (SI) < -1.0 copper sheathed heating unit
- Saturation Index (SI) > +0.4 (if an expansion control valve is not fitted) water heater cylinder
- Saturation Index (SI) > +0.8 temperature pressure relief valve

<table>
<thead>
<tr>
<th>Water Chemistry</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids (TDS) &gt; 2500 mg/L</td>
<td>water heater cylinder</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS) not suitable for anode type</td>
<td>water heater cylinder</td>
</tr>
<tr>
<td>Saturation Index (SI) &lt; -1.0</td>
<td>copper sheathed heating unit</td>
</tr>
<tr>
<td>Saturation Index (SI) &gt; +0.4 (if an expansion control valve is not fitted)</td>
<td>water heater cylinder</td>
</tr>
<tr>
<td>Saturation Index (SI) &gt; +0.8</td>
<td>temperature pressure relief valve</td>
</tr>
<tr>
<td>Saturation Index (SI) &gt; +0.8</td>
<td>standard watts density heating unit</td>
</tr>
</tbody>
</table>
SAVE A SERVICE CALL

Check the items below before making a service call. You will be charged for attending to any condition or fault that is not related to manufacture or failure of a part.

NOT ENOUGH HOT WATER (OR NO HOT WATER)
This can occur with new installations and is normally related to some misunderstandings as to the use of the booster heating unit.

- **Insufficient sunlight**
  Insufficient sunlight due to cloudy weather during hotter months or low solar energy contribution in colder months may mean the booster heating unit is required to boost more often.

  Ensure the booster heating unit is being used as advised. Refer to “Booster Control” on page 7.

- **Booster heating unit not operating**
  Inspect the isolating switch marked “HOT WATER” or “WATER HEATER” at the switchboard and ensure it is turned “ON”.

  Check the timer (if one is installed) and it’s settings to ensure power is available to the booster heating unit.

  **Note:** Check the electricity supply to which the unit is connected. If on an Off-Peak or time controlled electricity supply remember heating hours are restricted.

  Check the fuse marked “HOT WATER” or “WATER HEATER” at the switchboard.

- **Collectors shaded**
  If trees or other objects shade the solar collectors or if the glass is dirty, the effectiveness of the solar collectors will be greatly reduced.

  Have the trees trimmed or the solar collectors relocated if the obstruction is permanent or clean the collector glass (refer to “Collector Glass” on page 11).

- **Are you using more hot water than you think?**
  Is one outlet (especially the shower) using more hot water than you think?

  Very often it is not realised the amount of hot water used, particularly when showering. Carefully review the family’s hot water usage. As you have installed an energy saving appliance, energy saving should also be practised in the home. Adjust your water usage pattern to take advantage of maximum solar gains.

  Have your plumber install a flow control valve to each shower outlet to reduce water usage.

- **Temperature pressure relief valve running**
  Is the relief valve discharging too much water?

  Refer to “Temperature Pressure Relief Valve Running” on page 16.

- **Thermostat setting**
  Ensure the thermostat setting is appropriate. You may choose to have your electrician adjust the thermostat upwards to gain additional hot water capacity when boosting.

  Refer to “Temperature Adjustment” on page 6.

  **Warning:** Hotter water increases the risk of scald injury.

- **Water heater size**
  Do you have the correct size water heater for your requirements?
WATER NOT HOT ENOUGH
You may find that due to heavy hot water usage or low solar energy gain the water temperature may be lower than normally expected. Ensure the booster is being used as advised. If a timer is installed, you will need to carefully plan your use of the booster heating unit to boost the water temperature on such occasions.

Temperature Redistribution: A lower water temperature may be noticed in the morning when the booster heating unit has not been energised overnight. This temperature reduction is caused by the transfer of heat energy overnight from the hot water in the upper part of the storage tank to the cold water in the lower part of the storage tank. This effect is often perceived as heat loss, but is actually the redistribution of stored heat more evenly over the entire contents of the storage tank. This heat is not lost to the system.

Temperature redistribution is more prevalent the more hot water is used the night before and in particular may be experienced during periods of low solar energy gain, such as during the cooler months. If higher temperature water is required, particularly in the morning, then use of the booster heating unit is necessary to raise the temperature of the water in the top section of the cylinder.

Temperature redistribution can also occur during days of lower solar radiation particularly during the cooler months if power to the booster heating element is not available, or the booster switch or time clock is left off.

If the water heater is connected to an Off-Peak (overnight) electricity supply, then switching to an Extended Off-Peak (overnight and day) supply should be considered. If a timer is being utilised, then a timed boost period in the afternoon prior to the evening usage should be considered.

Refer also to "Booster Control" on page 7.

TEMPERATURE PRESSURE RELIEF VALVE RUNNING

- Normal Operation
  It is normal and desirable this valve allows a small quantity of water to escape during the heating cycle. However, if it discharges more than a bucket full of water in 24 hours, there may be another problem.

- Continuous dribble
  The easing lever on the relief valve should be raised gently for a few seconds (refer to "Temperature Pressure Relief Valve" on page 11). This may dislodge a small particle of foreign matter and clear the fault. The lever should be released gently.

- Steady flows for long period (often at night)
  This may indicate the mains water pressure sometimes rises above the designed pressure of the water heater. Ask your installing plumber to fit a pressure limiting valve.

⚠️ Warning: Never replace the relief valve with one of a higher pressure rating.

- Heavy flows of hot water until the water heater is cold - then stops until water reheats
  The water heater must be switched off at the isolating switch or switchboard. Phone Rheem Service or their nearest Accredited Service Agent to arrange for an inspection.

EXPANSION CONTROL VALVE RUNNING
If an expansion control valve is fitted in the cold water line to the water heater (refer to page 41) it may discharge a small quantity of water instead of the temperature pressure relief valve on the water heater. The benefit is that energy is conserved as the discharged water is cooler.

COLLECTOR GLASS
The Rheem warranty DOES NOT cover breakage of solar collector glass. Check your household insurance policy covers collector glass breakage.

⚠️ Warning: No attempt should be made to remove or replace broken collector glass.

The collector glass is not offered as a replacement part. Should the solar collector require replacement, contact Rheem Service or their nearest Accredited Service Agent.
HIGHERS THAN EXPECTED ELECTRICITY BILLS

With the installation of your new solar hot water system, maximum electrical energy savings can be achieved with careful planning of hot water usage. Should you at any time feel your electricity bill is higher than expected, we suggest you check the following points:

- Is the relief valve running excessively?
  Refer to “Temperature Pressure Relief Valve Running” on page 16.

- Is one outlet (especially the shower) using more hot water than you think?
  Refer to “Not Enough Hot Water” on page 15.

- Is there a leaking hot water pipe, dripping hot water tap, etc?
  Even a small leak will waste a surprising quantity of hot water and energy. Replace faulty tap washers, and have your plumber rectify any leaking pipe work.

- Are you using the booster heating unit properly?
  Refer to “Booster Control” on page 7.

- Has there been an increase in hot water usage?
  An increase in hot water usage may result in an increase in booster operation.

- Has your water heating tariff rate been increased by your electricity retailer since your previous bill?

ELECTRICITY TARIFFS

The electricity tariff to which your solar water heater is connected will play an important role in the overall effectiveness of the system. It is important you are aware of this tariff to enable you to take full advantage of the boosting period, i.e. Domestic / Continuous or Time of Use, Extended Off-Peak (overnight and day) or extended time controlled, or Off-Peak (overnight) or time controlled.

IF YOU HAVE CHECKED ALL THE FOREGOING AND STILL BELIEVE YOU NEED ASSISTANCE, PHONE RHEEM SERVICE OR THEIR NEAREST ACCREDITED SERVICE AGENT.
THIS WATER HEATER IS NOT SUITABLE FOR POOL HEATING.

The system is suitable for installation with Rheem S200 or NPT 200 solar collectors.

IMPORTANT NOTES

- Working on roofs is and should always be considered a hazardous activity, particularly early in the morning, late in the evening, when the roof is wet or during and after periods of rain.
- All work must be carried out in accordance with Local, State and Federal Occupational Safety, Health and Welfare Regulations. In particular, the requirements for safety whilst manual lifting, working at heights and on roofs.
- Installers must be competently trained in:
  - Height Hazard Assessment
  - Working at Height Procedures
  - Assessment / Use / Wearing of correct height safety equipment (harnesses etc.)
  - All other relevant safety factors specific to the installation and maintenance work to be compliant with suitable Occupational, Health and Safety Regulations / Codes.
- All relevant permits shall be obtained from the regulatory authorities before commencing work to install the solar hot water system.
- All work carried out must be performed by appropriately qualified tradespeople or be suitably supervised for trades assistant duties.
- Every care must be taken to protect and warn occupants of the building and the public from personal injury which may occur from falling tools, roof materials, fittings or any other hazards of a general nature.
- Advise the occupants of any inconvenience which may occur due to disconnection of existing water and electrical supplies.
- The connection, attachment, integration or general association of other equipment or parts which either directly or indirectly affect the operation or performance of this equipment could void the Rheem warranty.
- All packaging materials must be removed from the solar storage tank prior to its installation. Refer to the warning on page 33 in relation to the removal of the solar collector packaging.

INSTALLATION STANDARDS

The water heater must be installed:

- by a qualified person, and
- in accordance with the installation instructions, and
- in compliance with Standards AS/NZS 3500.4, AS/NZS 3000 and all local codes and regulatory authority requirements.

In New Zealand, the installation must also conform to Clause G12 of the New Zealand Building Code.

Victorian Installers

Notice to Victorian Installers from the Victorian Plumbing Industry Commission if this solar water heater is installed in a new Class 1 dwelling in the State of Victoria. The system model number is to be recorded on the Certificate of Compliance. It is also a requirement to provide the householder with permanent documentation recording the system model number exactly as it is shown in the 'List of systems capable of complying with the regulations' published by Sustainability Victoria (see www.sustainability.vic.gov.au). This documentation may be in the form of an indelible label adhered to the solar storage tank, or other suitable form placed in an accessible location, such as the meter box, for later inspection.
FREEZE PROTECTION
A 52C series system is suitable for installation in areas subject to frost or freeze conditions. Freeze conditions occur below 6°C. These systems have NO WARRANTY for freeze damage if non-Rheem approved closed circuit fluid has been used or if the closed circuit fluid has been incorrectly mixed (refer to “Terms of the Rheem Warranty” on page 55).

A 52C series system is supplied with heat transfer fluid concentrate. During installation and commissioning the heat transfer fluid concentrate is blended with water in the appropriate proportion to achieve the required frost protection. The amount of heat transfer fluid concentrate supplied with this water heater provides protection in frost prone areas to a temperature of -7°C. If protection is required at lower temperatures, additional heat transfer fluid concentrate will be needed. The storage cylinder must be filled with water before charging the closed circuit with closed circuit fluid. Refer to “Closed Circuit Fluid” on page 49.

WATER HEATER APPLICATION
This water heater is designed for use in a single family domestic dwelling for the purpose of heating potable water. Its use in an application other than this may shorten its life.

If this water heater is to be used where an uninterrupted hot water supply is necessary for the application or business, then there should be backup redundancy within the hot water system design. This should ensure the continuity of hot water supply in the event that this water heater was to become inoperable for any reason. We recommend you provide advice to the system owner about their needs and building backup redundancy into the hot water supply system.

This water heater is designed to be installed as an electric boosted solar water heater with its booster heating unit connected to a power supply, however it may be installed with an in-series continuous flow or storage booster.

If this water heater is installed with an in-series booster, then the electric booster heating unit will not be connected to a power supply and the references to the electric booster heating unit, thermostat and boosting controls in these installation instructions will not be applicable to the installation.

Note: AS 3498 requires that a water heater provides the means to inhibit the growth of Legionella bacteria in potable water. This water heater can satisfy this AS 3498 requirement provided the electric booster is energised for a sufficient period each day and the electric booster thermostat setting is 60°C or higher.

If this water heater is installed with an in-series continuous flow gas booster, then this requirement of AS 3498 can be satisfied provided the booster is energised, its preset outlet temperature setting is 70°C or higher and a remote temperature controller is not used.

If this water heater is installed with an in-series storage booster, then this requirement of AS 3498 can be satisfied provided the storage booster is energised and its thermostat setting is 60°C or higher.

Installing the Water Heater as a Pre-Heater
This water heater can be used as a pre-heater to a new or existing in-series booster water heater provided:

- The in-series booster water heater is;
  - thermostatically-controlled and not flow-controlled, except when used in conjunction with an electronic continuous flow gas water heater, and
  - is suitable to be used as an in-series booster water heater for a solar water heater.
- The operating pressures of the two water heaters are compatible or reduced to the lower of the two heaters.
- The in-series booster water heater has sufficient thermal capacity to supply the hot water requirements of the application during periods of low or no solar gain.
- A temperature-operated bypass valve is installed if the in-series water heater has either an over temperature energy cut-out which can be permanently disabled by high temperature hot water or a maximum recommended inlet supply temperature less than the temperature of water which can be supplied by this solar water heater.
SOLAR WATER HEATER STORAGE TANK LOCATION
The solar storage tank is designed to be installed on the roof directly coupled to the solar collectors. The solar water heater should be installed close to either the most frequently used outlet or the previously installed water heater in a retrofit installation if existing pipe work is to be utilised, and its position chosen with safety and service in mind. The solar water heater should be installed with a north facing aspect (refer to “Solar Collector Location” on page 29). The solar storage tank should not be installed inside the roof space.

The solar collectors must not be installed with an inclination of less than 10°, otherwise the closed circuit fluid will not thermosiphon efficiently through the collectors.

Clearance must be allowed for servicing of the solar storage tank. Make sure the temperature pressure relief valve lever is accessible and the side cover, thermostat and booster heating unit can be removed for service. You must be able to read the information on the rating plate. If possible leave side room of one water heater length so the anode can be inspected or replaced.

Remember you may have to remove the entire solar storage tank later for servicing. The solar storage tank must be capable of being removed without structural alteration to the building or major alteration to the piping.

For a single water heater installation, follow the diagrams on pages 25 to 26. For multiple water heater installations, follow the instructions on pages 46 and 47.

MAINS WATER SUPPLY
Where the mains water supply pressure exceeds that shown in the table below, an approved pressure limiting valve is required and should be fitted as shown in the installation diagram (refer to diagram on page 41).

<table>
<thead>
<tr>
<th>Model</th>
<th>180, 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Pressure Relief valve setting</td>
<td>1000 kPa</td>
</tr>
<tr>
<td>Expansion control valve setting *</td>
<td>850 kPa</td>
</tr>
<tr>
<td>Max. mains supply pressure</td>
<td></td>
</tr>
<tr>
<td>With expansion control valve</td>
<td>680 kPa</td>
</tr>
<tr>
<td>Without expansion control valve</td>
<td>800 kPa</td>
</tr>
</tbody>
</table>

* Expansion control valve not supplied with the water heater

TANK WATER SUPPLY
If the water heater is supplied with water from a tank supply and a pressure pump system is not installed, then the bottom of the supply tank must be at least 1 m above the highest point of the hot water plumbing system, including the water heater. Care must be taken to avoid air locks. The cold water line to the water heater should be adequately sized and fitted with a full flow gate valve or ball valve.

RAINWATER COLLECTION SYSTEM
Before installing a closed circuit system, the installer should determine whether rainwater run-off from the roof on which the system will be mounted, is collected in a rainwater tank. If a 52C series system is to be installed on a section of roof which is part of a rainwater runoff collection system, then it is recommended this section of roof and its gutter be isolated from the rainwater collection system. The gutter should be isolated to a width greater than the solar collectors and pipe work and must have suitable drainage. The installer should ensure in the event of a leak from the closed circuit, a rainwater tank cannot be contaminated with closed circuit fluid.

The closed circuit fluid acts as an anti-freeze agent and rust inhibitor, is non-toxic to humans and is harmless to the environment. However it does have an adverse effect on water stored in rainwater tanks. It will kill microscopic algae typically present in rainwater tanks and cause an unpleasant odour to develop. This will result in the rainwater tank having to be drained and cleaned.
The section of roof and gutter should be isolated from the rainwater collection system before the commissioning of the solar water heater, so that any leak or spillage during commissioning does not make its way into the rainwater tank.

The installer should discuss alternative options to suit the installation with the householder. Any alterations to the roof drainage system must comply with the relevant building regulations, codes and Standards.

Refer to “Rainwater Collection System” on page 8 for additional information on what to do if a rainwater tank does become contaminated with closed circuit fluid.

HOT WATER DELIVERY

This water heater can deliver water at temperatures which can cause scalding.

It is necessary and we recommend that a temperature limiting device be fitted between the water heater and the hot water outlets in any ablution area such as a bathroom or ensuite, to reduce the risk of scalding. The installing plumber may have a legal obligation to ensure the installation of this water heater meets the delivery water temperature requirements of AS/NZS 3500.4 so that scalding water temperatures are not delivered to a bathroom, ensuite or other ablution area.

The temperature limiting device used with a solar water heater should have a specified ‘minimum temperature differential’ between the hot water inlet and the tempered water outlet of no greater than 10°C. In addition, a temperature limiting device capable of receiving a hot water supply temperature of up to 99°C should be used in conjunction with a Rheem 52C series solar thermosiphon system. Refer to the specifications of the temperature limiting device.

Where a temperature limiting device is installed adjacent to the solar water heater, the cold water line to the temperature limiting device can be branched off the cold water line either before or after the isolation valve, non-return valve and pressure limiting valve to the solar storage tank for an indirect closed circuit solar water heater.

Two Temperature Zones Using a Temperature Limiting Device – Indirect Solar Water Heater

If a pressure limiting valve is installed on the cold water line to the solar water heater and the cold water line to a temperature limiting device branches off before this valve or from another cold water line in the premises, then a pressure limiting valve of an equal pressure setting may be required prior to the temperature limiting device.

If a combination isolation valve and non-return valve (duo or trio valve) is installed on the cold water line to the solar water heater and the cold water line to the temperature limiting device branches off after this valve, then a second non-return valve must be installed between the cold water branch and the solar storage tank.

If an expansion control valve is required, it must always be installed after the non-return valve and be the last valve prior to the solar storage tank.
CIRCULATED HOT WATER FLOW AND RETURN SYSTEM

A solar water heater should not be installed as part of a circulated hot water flow and return system in a building. The benefits of solar gain will be significantly reduced and energy gained from the sun lost through the pipe work.

If a circulated flow and return system is required, it is necessary to bypass the solar water heater and install a secondary water heater connected to the hot water flow and return line and supplied from the solar water heater. The secondary water heater must be a storage water heater able to provide a hot water outlet temperature of at least 60°C. **Note:** The thermostat must always be set to at least 60°C. Refer to the diagram on page 22.

Temperature Limiting Device

A temperature limiting device cannot be installed in circulated hot water flow and return pipe work. The tempered water from a temperature limiting device cannot be circulated. Where a circulated hot water flow and return system is required in a building, a temperature limiting device can only be installed on a dead leg, branching off the circulated hot water flow and return pipe.

If circulated tempered water were to be returned back to the water heater, depending on the location of the return line connection on the water supply line to the water heater, then either:

- water will be supplied to the cold water inlet of the temperature limiting device at a temperature exceeding the maximum recommended water supply temperature, or
- when the hot taps are closed no water will be supplied to the cold water inlet of the temperature limiting device whilst hot water will continue to be supplied to the hot water inlet of the temperature limiting device.

These conditions may result in either water at a temperature exceeding the requirements of AS/NZS 3500.4 being delivered to the hot water outlets in the ablution areas, or the device closing completely and not delivering water at all, or the device failing. Under either condition, the operation and performance of the device cannot be guaranteed.

---

**Diagram:**

[Circulated Hot Water Flow and Return System – Solar Water Heater]
REDUCING HEAT LOSSES
The cold water line to and the hot water line from the water heater must be insulated in accordance with the requirements of AS/NZS 3500.4. The insulation must be weatherproof and UV resistant if exposed.

The pipe work between the solar storage tank and the solar collectors may be required to be insulated. Refer to “Warning: Plumber Be Aware” on page 31.

ANODE
The vitreous enamel lined cylinder of the water heater is only covered by the Rheem warranty when the total dissolved solids (TDS) content in the water is less than 2500 mg/L and when the correct colour coded anode is used. If an incorrect colour coded anode is used in the water heater, any resultant faults will not be covered by the Rheem warranty. In addition, the use of an incorrect colour coded anode may shorten the life of the water heater cylinder.

The correct colour coded anode for the water supply being used must be selected and fitted to the water heater for the Rheem warranty to apply to the water heater cylinder (refer to “Water Supplies” on page 12 and the Anode Selection chart on page 12). The orange anode is typically fitted as standard.

<table>
<thead>
<tr>
<th>Total Dissolved Solids</th>
<th>Anode colour code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 400 mg/L</td>
<td>Orange</td>
</tr>
<tr>
<td>400 – 600 mg/L</td>
<td>Orange or Blue</td>
</tr>
<tr>
<td>600 – 2500 mg/L</td>
<td>Blue</td>
</tr>
<tr>
<td>2500 mg/L +</td>
<td>Blue (no cylinder warranty)</td>
</tr>
</tbody>
</table>

If the TDS is greater than 600 mg/L and the anode has not been changed to a blue anode, there is the possibility the anode may become overactive and hydrogen gas could accumulate in the top of the water heater during long periods of no use. In areas where this is likely to occur, the installer should instruct the householder on how to dissipate the gas safely (refer to “Caution” on page 13).

SADDLING - PIPE WORK
To prevent damage to the cylinder when attaching pipe clips or saddles to the water heater jacket, we recommend the use of self-drilling screws with a maximum length of 13 mm. Should pre drilling be required, extreme caution must be observed when penetrating the jacket of the water heater.

Note: If the cylinder is damaged as a result of attaching pipe clips or saddles to the jacket, any resultant faults will not be covered by the Rheem warranty.

BOOSTER HEATING UNIT
The booster heating unit is for heating the water at times of low solar energy gain, such as during very cloudy or rainy weather, or during the colder months. Refer to “Connections – Electrical” on page 44 for electrical connection requirements and control options of the booster heating unit.

If this water heater is installed with an in-series booster, then the electric booster heating unit in the solar storage tank will not need to be connected to a power supply.

TANK REPLACEMENT
If replacing a tank over 5 years old, the replacement tank must be fitted with a new temperature pressure relief valve and expansion control valve. These valves are not supplied with the tank.
### DIMENSIONS AND TECHNICAL DATA

**180 Litre**

**300 Litre**

<table>
<thead>
<tr>
<th>Solar Storage Tank</th>
<th>Solar Collectors</th>
<th>Pipe Kit</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Nominal Capacity (litres)</td>
<td>Empty (kg) cartoned</td>
<td>Full (kg)</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>52C180/1S</td>
<td>52C180</td>
<td>180</td>
<td>74</td>
</tr>
<tr>
<td>52C180/1NPT</td>
<td>52C180</td>
<td>180</td>
<td>74</td>
</tr>
<tr>
<td>52C300/2S</td>
<td>52C300</td>
<td>300</td>
<td>109</td>
</tr>
<tr>
<td>52C300/2NPT</td>
<td>52C300</td>
<td>300</td>
<td>109</td>
</tr>
</tbody>
</table>

Tank model number has a two digit suffix to denote the heating unit size, where 05 = 2.4kW, 07 = 3.6kW

Technical data is subject to change.
COLLECTOR DATA

<table>
<thead>
<tr>
<th>Feature</th>
<th>S200</th>
<th>NPT200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>m²</td>
<td>1.86</td>
</tr>
<tr>
<td>Capacity</td>
<td>litres</td>
<td>4.0</td>
</tr>
<tr>
<td>Working pressure</td>
<td>kPa</td>
<td>200</td>
</tr>
<tr>
<td>No of risers</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Riser material</td>
<td>Steel</td>
<td>Copper</td>
</tr>
<tr>
<td>Absorber material</td>
<td>Steel</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Absorber surface</td>
<td>Polyester powder coat</td>
<td>Polyester powder coat</td>
</tr>
<tr>
<td>Tray material</td>
<td>Steel, Galvanised 0.55 mm</td>
<td>Steel, Galvanised 0.55 mm</td>
</tr>
<tr>
<td>Insulation material</td>
<td>Polyester: 38 mm</td>
<td>Polyester: 38 mm</td>
</tr>
<tr>
<td>Glass</td>
<td>Tempered Low Iron, 3.2mm thick</td>
<td>Tempered Low Iron, 3.2mm thick</td>
</tr>
</tbody>
</table>

TYPICAL INSTALLATION – SOLAR PREMIER HILINE 52C180

- **HOT WATER OUTLET**
  - Use a union connection and insulate hot water pipe

- **TEMPERATURE PRESSURE RELIEF VALVE**
  - Drainpipe must terminate away from the water heater. Discharge point must comply with AS/NZS 3500.4
  - **TEMPERATURE PRESSURE RELIEF VALVE DRAIN LINE**

- **COLD WATER CONNECTION**
  - Use a union connection

- **SOLAR HOT PIPE**
  - Copper pipe to be insulated as required

- **COLD WATER CONNECTION**
  - Cold water connection must comply with local regulations. Isolation valve must be in a readily accessible position.

- **BOOSTER HEATING UNIT AND THERMOSTAT COVER**
- **SOLAR COLD PIPE**
  - Copper pipe to be insulated as required

- **GROUND LEVEL**
**TYPICAL INSTALLATION – SOLAR PREMIER HILINE 52C300**

- **HOT WATER OUTLET**
  - Use a union connection and insulate hot water pipe

- **TEMPERATURE PRESSURE RELIEF VALVE**

- **TEMPERATURE PRESSURE RELIEF VALVE DRAIN LINE**
  - Drainpipe must terminate away from the water heater. Discharge point must comply with AS/NZS 3500.4

- **COLD WATER CONNECTION**
  - Use a union connection

- **SOLAR HOT PIPE**
  - Copper pipe to be insulated as required

- **SOLAR COLD PIPE**
  - Copper pipe to be insulated as required

- **BOOSTER HEATING UNIT AND THERMOSTAT COVER**

- **GROUND LEVEL**

- **COLD WATER CONNECTION**
  - Cold water connection must comply with local regulations. Isolation valve must be in a readily accessible position.
ASSEMBLY DIAGRAM – 52C SERIES – CONETITE FITTING COLLECTORS – S200

Components
1. Valve 1/8” PR6 Jacket Pressure Relief 80 kPa
2. Tee R3/4 M x RP1/2 F x G1/2 M Olive
3. HT55 TPR Valve 1000 kPa
4. Union Body R3/4 M x DN15 Olive
5. Union Body R1/2 M x DN15 Olive
6. Nut Compression
7. Olive Compression Screw, nut & washer
8. Tee G1/2 x G1/2 x G1/2
9. H50 Expansion Control 850 kPa
10. Nipple R1/2 M x R1/2 M
11. Combination Stop, Strainer, Non-Return Valve (trio valve)
12. Pressure Limiting Valve*
13. Mounting Strap
14. Tank Clamp
15. Screw, nut, washer
16. Collector Mounting Rail
17. Collector clamp
18. Tank to Collector Spacer
19. Collector Union - conetite
20. Collector Cold Flow Pipe
21. Collector Hot Return Pipe
22. Collector Gland Nut G3/4
23. Filling Plug Assembly
24. Collector bung
* if required
## ASSEMBLY DIAGRAM – 52C SERIES – SCREWED FITTING COLLECTORS – NPT200

### Components

<table>
<thead>
<tr>
<th>No.</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve 1/8” PR6 Jacket Pressure Relief 80 kPa</td>
</tr>
<tr>
<td>2</td>
<td>Tee R3/4 M x RP1/2 F x G1/2 M Olive</td>
</tr>
<tr>
<td>3</td>
<td>HT55 TPR Valve 1000 kPa</td>
</tr>
<tr>
<td>4</td>
<td>Union Body R3/4 M x DN15 Olive</td>
</tr>
<tr>
<td>5</td>
<td>Union Body R1/2 M x DN15 Olive</td>
</tr>
<tr>
<td>6</td>
<td>Nut Compression</td>
</tr>
<tr>
<td>7</td>
<td>Olive Compression</td>
</tr>
<tr>
<td>8</td>
<td>Tee G1/2 x G1/2 x G1/2</td>
</tr>
<tr>
<td>9</td>
<td>H50 Expansion Control 850 kPa</td>
</tr>
<tr>
<td>10</td>
<td>Nipple R1/2 M x R1/2 M</td>
</tr>
<tr>
<td>11</td>
<td>Combination Stop, Strainer, Non-Return Valve (trio valve)</td>
</tr>
<tr>
<td>12</td>
<td>Pressure Limiting Valve*</td>
</tr>
<tr>
<td>13</td>
<td>Mounting Strap</td>
</tr>
<tr>
<td>14</td>
<td>Tank Clamp</td>
</tr>
<tr>
<td>15</td>
<td>Screw, nut, washer</td>
</tr>
<tr>
<td>16</td>
<td>Collector Mounting Rail</td>
</tr>
<tr>
<td>17</td>
<td>Collector clamp</td>
</tr>
<tr>
<td>18</td>
<td>Tank to Collector Spacer</td>
</tr>
<tr>
<td>19</td>
<td>Collector Union – M33</td>
</tr>
<tr>
<td>20</td>
<td>Collector Cold Flow Pipe</td>
</tr>
<tr>
<td>21</td>
<td>Collector Hot Return Pipe</td>
</tr>
<tr>
<td>22</td>
<td>Collector Gland Nut G3/4</td>
</tr>
<tr>
<td>23</td>
<td>Filling Plug Assembly</td>
</tr>
<tr>
<td>24</td>
<td>Collector Adaptor M33 M x G3/4 F Cone</td>
</tr>
<tr>
<td>25</td>
<td>O-ring</td>
</tr>
<tr>
<td>26</td>
<td>Collector blanking disk</td>
</tr>
<tr>
<td>27</td>
<td>Collector gland nut M33</td>
</tr>
</tbody>
</table>

* if required
SOLAR COLLECTOR LOCATION
The solar collectors must be installed in a shade free position. The surroundings should be checked for higher buildings or trees which may cause shade at other times of the year and for small trees which may grow and shade the solar collectors in the future.

Sufficient space should be left around the thermosiphon solar water heater to allow for safe service access.

Roof area required (excluding service and access space):

<table>
<thead>
<tr>
<th>Collector Type</th>
<th>Width (m)</th>
<th>Depth (m)</th>
<th>Weight (Full)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 litre x 1</td>
<td>1.6</td>
<td>2.5</td>
<td>up to 294 kg</td>
</tr>
<tr>
<td>300 litre x 2</td>
<td>2.5</td>
<td>2.5</td>
<td>up to 491 kg</td>
</tr>
</tbody>
</table>

The installation must comply with the requirements of AS/NZS 3500.4 and all local codes and regulatory authority requirements. Refer to “System Assembly” on page 32 for the procedure to mount the system and connection details of the solar hot and solar cold pipes.

ROOF STRENGTH
The installer must ensure the structural integrity of the building is not compromised by the solar water heater installation and the roof structure is suitable to carry the full weight of the solar storage tank, solar collectors and frame (if one is installed). If in any doubt of the construction or the condition of the roof, the roof should be suitably strengthened. Consult a structural engineer.

The solar storage tanks, when full of water, weigh approximately 245 kg (180 litre) and 398 kg (300 litre). Each S200 solar collector and its fittings weigh up to approximately 49 kg and each NPT200 solar collector and its fittings weigh approximately 42 kg when full of closed circuit fluid.

ORIENTATION OF SOLAR COLLECTORS
To help maximise system performance, solar collectors should be installed with an optimum orientation facing true north (in the southern hemisphere) or true south (in the northern hemisphere). Always check for true north or true south using a compass or other suitable device.

The solar performance of a system reduces as the orientation of the collectors moves away from the optimum orientation, resulting in the need for increased boosting to supply the same hot water load. Solar collectors facing up to 45° from the optimum orientation will receive about 4% to 5% less total solar radiation.

However, the optimum orientation of solar collectors is not always practical or achievable. If it is not possible to achieve the optimum orientation, then it is recommended to install the solar collectors as close to the optimum orientation as possible.

If the choice to install the solar collectors with either a similar easterly or westerly bias is to be made, then the daily hot water load may need to be considered. If the majority of hot water usage is before 2:00 PM favour an easterly bias. If the majority of hot water usage is after 2:00 PM favour a westerly bias.

Solar collectors may be installed up to 90° from the optimum orientation, however solar system performance will be reduced. The system owner needs to be made aware of, understand and accept that solar system performance will be reduced and increased boosting may be required to meet their hot water requirements.
INCLINATION OF SOLAR COLLECTORS

To help maximise system performance, solar collectors should be installed with an optimum inclination. This is equal to 90% to 100% of the local latitude angle when collectors are oriented within 60° of true north or true south, and generally between 10° and 20° when the collectors are oriented between 60° and 90° from the optimum orientation.

Generally, improved summer performance is obtained from an angle of inclination less than the optimum angle and improved winter performance is obtained by an angle of inclination greater than the optimum angle. If the angle of inclination varies by 20° from the optimum angle, the solar collectors will receive about 10% less total annual solar radiation. The **latitude of some Australian cities** are listed on page 30.

However, the optimum inclination of solar collectors is not always practical or achievable. A thermosiphon solar water heater may be installed at the roof angle for simplicity of installation and appearance, but must never be less than 10° from the horizontal.

The water heater, when installed with the supplied mounting system, is suitable for installations with an inclination of up to 30°. Where the solar water heater is installed at inclinations greater than 30°, a With Pitch frame is necessary. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.

A Fixed Pitch frame can be installed to increase the angle of inclination of the thermosiphon solar water heater. This type of frame should be used if the roof pitch is less than 10° or varies by more than 20° below the optimum angle. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.

The use of a Fixed Pitch frame should be discussed with the system owner. If this option is neither possible nor acceptable to the system owner, then the system owner needs to be made aware of, understand and accept that solar system performance will be reduced and increased boosting may be required to meet their hot water requirements.

CYCLONIC OR HIGH WIND AREAS

For an installation of a thermosiphon solar water heater in a cyclonic or high wind area, a suitable With Pitch frame is required. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.

The installation of this solar water heater on a suitable frame, subject to the frame’s design criteria not being exceeded:

- is suitable for installation in geographic locations up to and within Wind Region D (With Pitch frame) or up to and within Wind Region C (Fixed Pitch frame), as defined in the Building Code of Australia, Australian Standard AS 4055-2012 and the Australian / New Zealand Standard AS/NZS 1170.2:2011, and

- may provide an acceptable method of installation where it is necessary to satisfy the requirements of the Building Code of Australia for high wind areas, or equivalent requirements.

LATITUDE OF SOME AUSTRALIAN CITIES

<table>
<thead>
<tr>
<th>City</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adelaide</td>
<td>35°S</td>
</tr>
<tr>
<td>Alice Springs</td>
<td>24°S</td>
</tr>
<tr>
<td>Brisbane</td>
<td>27°S</td>
</tr>
<tr>
<td>Broken Hill</td>
<td>31°S</td>
</tr>
<tr>
<td>Cairns</td>
<td>17°S</td>
</tr>
<tr>
<td>Canberra</td>
<td>35°S</td>
</tr>
<tr>
<td>Darwin</td>
<td>12°S</td>
</tr>
<tr>
<td>Geraldton</td>
<td>28°S</td>
</tr>
<tr>
<td>Hobart</td>
<td>42°S</td>
</tr>
<tr>
<td>Mildura</td>
<td>34°S</td>
</tr>
<tr>
<td>Melbourne</td>
<td>38°S</td>
</tr>
<tr>
<td>Perth</td>
<td>32°S</td>
</tr>
<tr>
<td>Port Hedland</td>
<td>20°S</td>
</tr>
<tr>
<td>Rockhampton</td>
<td>24°S</td>
</tr>
<tr>
<td>Sydney</td>
<td>34°S</td>
</tr>
<tr>
<td>Townsville</td>
<td>19°S</td>
</tr>
</tbody>
</table>
WARNING: Plumber – Be Aware

- The solar hot and solar cold pipe work between the solar storage tank and the solar collectors are supplied in the pipe kit. The supplied copper solar hot and solar cold pipes **MUST BE** used.

- If the solar water heater is installed either on a metal roof or in a trafficable area, such as on an accessible roof, then the solar hot and solar cold pipes must be insulated. The solar hot and solar cold pipes may be required to be insulated to comply with local regulations.

  If insulation is required, the full length of the solar hot and solar cold pipes **MUST BE** insulated.

  The insulation must:
  - be of a closed cell type or equivalent, suitable for a solar water heating application and capable of withstanding the temperature of the closed circuit fluid generated by the solar collectors under stagnation conditions
  - The specification of the chosen insulation material should be checked with the insulation manufacturer prior to installation as different materials may vary in temperature tolerance.
  - be at least 13 mm thick, however thicker insulation may be required to comply with the requirements of AS/NZS 3500.4
  - be weatherproof and UV resistant
  - be fitted up to and cover the connections on both the solar storage tank and the solar collectors.

  The insulation will offer corrosion protection to a metal roof against water runoff over the copper pipe, assist in avoiding accidental contact with the solar pipe work as high temperature closed circuit fluid can flow from the solar collectors to the solar storage tank and also reduce pipe heat losses.

- Plastic pipe **MUST NOT** be used, as it will not withstand the temperature and pressure of the closed circuit fluid generated by the solar collectors under stagnation conditions. The solar collectors can generate extremely high heating fluid temperatures up to 150°C and high heating fluid pressure of 200 kPa. Plastic pipe cannot withstand these temperatures and pressures and **MUST NOT** be used. Failure of plastic pipe can lead to the release of high temperature heating fluid and cause severe water damage and flooding.

- There **must be a continuous fall of a minimum 10°** in the pipe work from the solar storage tank to the solar collectors. The highest point of the solar cold pipe and solar hot pipe must be where they connect to the solar storage tank, otherwise thermosiphoning will not occur.

- A non-return valve **MUST BE** installed on the cold water line to the solar storage tank **AFTER** the cold water branch to a temperature limiting device.

- The solar water heater, including the collector circuit and solar collectors, is to be isolated during the testing and commissioning of the heated water reticulation system in a building, in accordance with Clause 11.1 and 11.3 (a) of AS/NZS 3500.4.
COMPONENTS AND KIT CONTENTS

The thermosiphon solar water heater is supplied with a pipe kit, which contains the components required to assemble the solar storage tank and solar collectors together. The thermosiphon pipe kits are suitable for:

12104225  52C180 tank with one S200 solar collector
12104269  52C300 tank with two S200 solar collectors
299180    52C180 tank with one NPT200 solar collector
299181    52C300 tank with two NPT200 solar collectors

<table>
<thead>
<tr>
<th>Part No</th>
<th>Kit Components and Description</th>
<th>12104225</th>
<th>12104269</th>
<th>299180</th>
<th>299181</th>
</tr>
</thead>
<tbody>
<tr>
<td>331847</td>
<td>Collector rail 1020 mm long standard</td>
<td>1</td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>331846</td>
<td>Collector rail 1650 mm long standard</td>
<td></td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>204600</td>
<td>Collector tank strap</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>451104</td>
<td>Valve TPR ½” HT55 1000 kPa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>451103</td>
<td>Valve ECV ½” H50 850 kPa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>203701</td>
<td>Valve Trio BVNR50S – isolation, no-return, strainer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>330872</td>
<td>Tank clamp</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>337147</td>
<td>Pipe cold assembly 181JKF</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>337119</td>
<td>Pipe cold assembly 302JKF</td>
<td></td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>337148</td>
<td>Pipe hot assembly 181JKF</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>337123</td>
<td>Pipe hot assembly 302JKF</td>
<td></td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>337144</td>
<td>Tank to collector spacer</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>331928</td>
<td>Collector clamp standard</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>330350</td>
<td>Screw set 5/16” UNC x ¾” SS</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>330806</td>
<td>Nut 5/16” SS</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>330354</td>
<td>Washer 5/16” SS</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>330686</td>
<td>Valve PR6 jacket relief 80kPa 1/8” (incl o-ring)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>331655</td>
<td>Nut compression G1/2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>331656</td>
<td>Olive ½”</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>334046</td>
<td>Nipple R½” M x R½” M</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>331657</td>
<td>Union body R1/2 M x G1/2 M olive</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>331658</td>
<td>Union body R3/4 M x G1/2 M olive</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>331666</td>
<td>Tee G1/2” x G½” x G½”</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>331663</td>
<td>Tee R3/4 M x RP1/2F x G1/2 M olive</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>337134</td>
<td>Fill plug assembly ¾” conetite, consisting of:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 x 337116gland nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 337117conetite fill fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 337130fill plug ¾”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 33015fill plug gasket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>337135</td>
<td>Collector bung assembly ¾” cone, consisting of:</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 x 337116gland nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x 337132collector bung ¾” conetite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>337121</td>
<td>Collector connector assembly cone type</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>330600</td>
<td>Gland nut L M33 M</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>330606</td>
<td>Copper blanking disc</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>330695</td>
<td>Collector connector assembly M33 screwed</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>347187</td>
<td>instruction to attach fill / drain label</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>347189</td>
<td>Label fill / drain</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>330171</td>
<td>O-ring 25 mm diam</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>344166</td>
<td>Union body M33 M x G3/4 F cone</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Notes:

- These solar collectors have passed the AS/NZS 2712 requirements for resistance to hailstone damage, so it is not normally necessary to fit a guard to a collector. Stone Guards are available to provide a level of protection to the collectors against vandalism or accidental damage. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.

- The Rheem warranty **DOES NOT** cover breakage of solar collector glass. Check your insurance policy covers collector glass breakage.

⚠️ **Warning:** No attempt should be made to remove or replace broken collector glass.

The collector glass is not offered as a replacement part. Should the solar collector require replacement, contact Rheem or your local Rheem Solar Water Heater Distributor for details.

⚠️ **Warning:** Do not remove the solar collector packaging completely, prior to the installation as the solar collector surface can become very hot. Remove only sufficient packaging material to enable the installation of the solar collectors.

⚠️ **Warning:** Upon completion of the installation it is necessary to leave the solar collector packaging covering the glass and fittings on the solar collectors. The packaging should not be removed until the solar storage tank is full of water and the water heater has been commissioned and is ready for use.

The solar collector packaging must be removed completely prior to the permanent operation of the water heater.

- All connectors, end plugs, ‘O’ rings, brass fittings, tank and collector straps and collector angle required for the installation are included with the pipe kit.

Suitable screws or anchors will be required to fix the tank and collector straps to the rafters for a pitched roof installation.

⚠️ **Warning:** Where straps, frames, etc. are secured to roof members, all fixings must be of an appropriate type to suit the type of member. Inadequate or inappropriate fixings may result in straps becoming unsecured and the installation of the solar hot water system becoming unsafe.

Refer to the installation instructions supplied with the pipe kit for details on the installation of the solar collectors and the connecting pipe work.

- If the solar storage tank is being installed with existing solar collectors, then utilise the existing fittings and pipes used on the installation. If the tank being replaced is over five years old, then a new temperature pressure relief valve and expansion relief valve must be installed.

- S200 collectors have conetite fittings. NPT200 collectors have screwed fittings.
ASSEMBLY PROCEDURE
Refer to the assembly diagrams on pages 27 and 28 for the location and position of components.

DO NOT MODIFY THESE PARTS IN ANY WAY.

1. **Roof Condition**: Check the condition of the roof and advise the client of any broken tiles or damaged roof sheeting.

2. **Solar Frame**: If a solar frame is to be installed, determine the location of the frame. Refer to “Solar Water Heater Storage Tank Location” on page 20 and “Solar Collector Location” on page 29 and the installation instructions provided with the frame.

   Assemble and fix the frame to the roof, following the installation instructions provided with the frame.

   Depending upon the positioning of the frame on the roof and any minor fall the roof may have, ensure the collector rail is either horizontal or is higher on the hot outlet side of the solar collectors. If in doubt use a spirit level.

   Proceed to step 6.

3. **Water Heater Location**: If a solar frame is not installed, select a suitable position for the solar water heater.

   Refer to “Solar Water Heater Storage Tank Location” on page 20 and “Solar Collector Location” on page 29.

4. **Position of Tank**: Select the position of the solar storage tank so the front of the foot is above a roof batten toward the nose of an even row of tiles or even metal roof sheet. The rear of the foot may be seated over the nose of the tiles on the next row behind. Where possible, the tank should be positioned at least three tiles from the ridge capping to prevent disturbance of the ridge.

   Remove several tiles to expose the rafters and this batten.

5. **Collector Rail**: Determine the location of the collector rail. Measure down the roof 2050 mm from the position of the foot of the solar storage tank to determine the location of the collector rail.

   **Note**: The collector straps are to be fitted to the collector rail before fixing the straps to the rafters.

   Determine which slots in the collector rail will be used for the collector straps. Hook two collector straps to the bottom collector rail. Refer to “Hooking Collector / Tank Strap to Collector Rail” on page 39 and Detail A on page 39.

   **Note**: The solar collectors must be installed at an angle from the horizontal. This is to ensure a sufficient angle rise across the collectors to assist in optimum thermosiphon operation and solar performance.

   Use a spirit level to determine the horizontal. Ensure the end of the collector rail at the hot outlet side of the solar collectors is between:

   - 12 – 15 mm (for one solar collector), or
   - 24 – 30 mm (for two solar collectors)

   higher up the roof from the horizontal than the cold inlet side of the solar collectors.

   If the roof material is not even where the collectors are to be installed, then it may be necessary to add 10 mm for each collector in the array to the above distances. It is important that the solar hot outlet is the highest point in the collector waterway so the system functions efficiently.

   **Tile Roof**: Remove the tiles on the next row above the position of the collector rail to expose the rafters. Ensure the collector rail is at the correct angle from the horizontal. Once in position, fix the collector straps to the rafters, using suitable screws or anchors. Replace the tiles.

   **Metal Roof**: Ensure the collector rail is at the correct angle from the horizontal. Once in position, fix the collector straps to the rafters, through the metal roofing material, using suitable screws or anchors. Care should be taken not to mark Colorbond® or other metal roof sheet with a marking pen and to remove all swarf from the metal roof as these can cause deterioration of the metal roofing material.

   **Note**: Fixings must penetrate only through the high point in the metal roof profile.
6. **Solar Collectors:** Position a solar collector in the correct configuration with the lower end seated in the collector rail. Prior to positioning the next solar collector (for a two collector installation), firmly clamp (two clamps per collector) to the collector rail using the clamps, hex screws, washers and nuts provided.

   Repeat this procedure for a second collector, firmly clamping the collector to the collector rail with two clamps.

   For a single collector installation ensure the collector is centered in the collector rail. Firmly clamp (two clamps per collector) to the collector rail using the clamps, hex screws, washers and nuts provided.

   Refer to “Clamping Collector to Collector Rail” on page 40.

   **Note:** Firmly clamping each solar collector to the collector rail as it is placed in position reduces the possibly of the collectors accidently moving or sliding off the collector rail.

![Collector Mounting](image)

7. **Collector Unions:** For a 300 model with two solar collectors, remove the red transport plugs from the sockets and couple the solar collectors together using the collector connector assemblies, conetite for S200 collectors, and M33 threaded and O-ring for NPT200 collectors, supplied in the pipe kit.

   **Note:** It will be necessary to loosen the clamps on a collector prior coupling it to an adjacent collector.

   Ensure the solar collectors are well seated and centered in the collector rail. Secure the clamps again on each collector.

![Collector Union Assembly](image)

8. **Tank Flashing, Tank to Collector Spacers:**

   **Tile Roof:** If used, fit the tank flashing sheet (not shown) under the top of the solar collectors and extend up the roof to the top of the solar storage tank location. Lift the roof tiles immediately above the solar storage tank location and secure the flashing sheet to the roofing members. Ensure the flashing sheet makes the section of roof under the tank waterproof.

   **Metal and Tile Roof:** Locate the Tank to Collector spacers against and under the top end of the solar collectors (one per collector for a two collector system), locating approximately 200 mm in from the outer edge of the collectors. Each tank to collector spacer should be located on the top of the tile or metal roof profile.
9. **Solar Storage Tank Positioning:** Position the solar storage tank in place above the Tank to Collector spacers or tank / collector rail if the installation is on a solar frame.

10. **Tank to Collector Connections of Pipe Work:**

    Remove the red transport plugs from the sockets of the collectors and remove the yellow instruction label from the solar cold and hot pipes.

    Connect the solar cold pipe (long pipe) supplied to the heat exchanger connection on the right hand end of the solar storage tank and to the bottom right connection of the solar collectors.

    Connect the solar hot pipe (short pipe) supplied to the heat exchanger connection on the left hand end of the solar storage tank and to the top left connection of the solar collectors.

    When connecting the solar cold and hot pipes the floating conetite should always be on the tank-side.

    **Screwed Collector Fittings:** Use an M33 to ¾” Cone Adaptor to connect the solar pipe work to the collector with an O-ring supplied at each of the collector connections.

    After connecting the tank to collector pipe work, ensure the nuts on the clamps at the collector rail to secure the solar collectors are tight.

11. **Fill Plug:** Fit the fill plug assembly to the bottom left connection of the solar collectors using the collector gland nut provided.

    **Screwed Collector Fittings:** Use an M33 to ¾” Cone Adaptor to connect the fill plug assembly to the collector with an O-ring supplied at the collector connection.

12. **Fill / Drain Label:** Attach the Fill / Drain label adjacent to the side of the solar collector to the Fill Plug.
13. **Collector Bung / End Plugs:**

*Conetite Collector Fittings:* Fit the collector bung to the top right connection of the solar collectors using the collector gland nut provided.

*Screwed Collector Fittings:* Fit an M33 collector nut supplied to the top right connection of the solar collectors using an O-ring and the blanking disc provided. The blanking disc should be installed with the smooth edge facing into the collector.

![Collector Bung / End Plug](image)

14. **Tank Clamps and Straps:** On a pitched roof installation, insert a tank strap into a tank clamp and then loosely attach the tank clamp to the rear foot of the tank base. Attach the upper part of the tank clamp and secure with the screw, washers and nut provided. There are two tank clamps per tank. Ensure the bolt heads fit into the valley of the tile.

Refer to “Hooking Collector / Tank Strap to Tank Clamp” and drawings on page 40. Ensure the bolt heads fit into the valley of the tile.

*Tile Roof:* Remove the tiles on the next row above the position of the solar storage tank to expose the rafters. Once in position, fix the tank straps to the rafters using suitable screws or anchors. Ensure the straps are tight. Replace the tiles.

*Metal Roof:* Once in position, fix the tank straps to the rafters, through the metal roofing material, using suitable screws or anchors. The tank straps may be cut to a length of approximately 400 mm to retain the aesthetics of the installation. Ensure the straps are tight.

**Note:** Fixings must penetrate only through the high point in the metal roof profile.

15. **Closed Circuit Relief Valve:** Fit the closed circuit relief valve to the top connection on the left hand side of the solar storage tank.
16. **Hot Water Outlet:** Fit the R3/4 M x RP1/2F x G1/2 M olive Tee to the hot water outlet.

Screw the temperature pressure relief valve into the Tee at the hot water outlet.

Orientate the outlets of the Tee and temperature pressure relief valve toward the rear of the tank and away from the electrical cover. The hot water pipe work and drain line from the temperature pressure relief valve **must not** be installed in front of or prevent access to the electrical cover of the water heater.

17. **Protective Film:** Peel the protective plastic film from the solar storage tank. The protective plastic will bake on and deteriorate if exposed to sunlight, reducing the aesthetics of the installation and become difficult to remove.

18. **Installation Check List:** Refer to the “Installation Check List” on page 38 prior to making the plumbing connections and filling the system with water.

19. **Plumbing and Electrical Connections:** Refer to “Connections – Plumbing” on page 41 for details on the cold water and hot water plumbing and “Connections – Electrical” on page 44 for details on the electrical connection.

**Notes:**

- Penetrations through the roofing material must be:
  - at the high point of the roof tile or metal sheet;
  - made neatly and kept as small as practicable;
  - waterproofed upon installation of the hot and cold pipes.

- Exposed pipe work between the solar storage tank and the penetrations through the roofing material should be kept to a minimum to maintain the aesthetics of the installation.

20. **Closed Circuit Filling:** Refer to “Closed Circuit Fluid” on page 49 for details on filling the closed circuit with the closed circuit fluid.

**INSTALLATION CHECK LIST**

Once the installation is completed and before the tank is full of water and the collector circuit is full of heating fluid, it is **IMPORTANT** to check the following:

- The solar hot and solar cold pipes grade downwards with a continuous fall of not less than 10° from the storage tank to the solar collectors. If in doubt use a spirit level.

- On a pitched roof installation without a frame, the hot outlet side of the collector array is between
  - 12 – 15 mm (for one solar collector), or
  - 24 – 30 mm (for two solar collectors)

  higher up the roof from the horizontal than the solar cold inlet side of the collector array. If in doubt use a spirit level.

- On a frame installation, depending upon the positioning of the frame on the roof and any minor fall the roof may have, ensure the collector rail is either horizontal or is higher on the hot outlet side of the solar collectors. If in doubt use a spirit level.
ASSEMBLY DRAWINGS

Hooking Collector / Tank Strap to Collector Rail

1. Determine which slots in the collector rail will be used for the collector / tank straps after locating the rafters and taking note of the rafter spacing.

   Note: The collector / tank straps are to be fitted to the collector rail before fixing the straps to the rafters.

<table>
<thead>
<tr>
<th>Rafter spacing</th>
<th>One collector (1 x one collector rail)</th>
<th>Two collectors (1 x two collector rail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mm (12&quot;)</td>
<td>1, 4 or 2, 3</td>
<td>1, 6 or 2, 5</td>
</tr>
<tr>
<td>400 mm (16&quot;)</td>
<td>1, 4</td>
<td>1, 5 or 2, 6</td>
</tr>
<tr>
<td>450 mm (18&quot;)</td>
<td>1, 4</td>
<td>2, 5</td>
</tr>
<tr>
<td>500 mm (20&quot;)</td>
<td>1, 4</td>
<td>1, 6 or 2, 5</td>
</tr>
<tr>
<td>600 mm (24&quot;)</td>
<td>2, 3</td>
<td>1, 5 or 2, 6</td>
</tr>
<tr>
<td>900 mm (36&quot;)</td>
<td>1, 4</td>
<td>2, 5</td>
</tr>
</tbody>
</table>

2. Noting the orientation of the collector strap’s folded end, slide the long straight end of the collector strap through the appropriate slot from the underside of the collector rail (refer to Detail A).

   Pull the collector strap through until the first bend in the strap slips into the slot in the collector rail. The strap will engage with the collector rail.

DETAIL A
Bottom Collector Rail – Collector Strap Orientation
Clamping Collector To Collector Rail
Refer to installation diagrams on pages 27 and 28 for position and Detail B.

1. Position the collector clamp (13) over the hole in the collector rail (1) with the top lip of the clamp over the collector trim.

2. Insert the hex screw through the hole in the collector clamp and collector rail (1), place the washer and nut on the screw and screw the nut until it seats firmly against the lip of the collector rail, applying medium pressure with a spanner to tighten.

Hooking Collector / Tank Strap to Tank Clamp

1. The tank clamp (330872) is supplied as a single extruded part and must be snapped into two. Snap by bending the clamp on the groove location.

2. Noting the orientation of the collector / tank strap’s folded end, slide the short end of the strap through the slot from the underside of the tank clamp.

3. Push the strap end through the tank clamp and make sure it is correctly orientated as illustrated.

4. Loosely pre-assemble bolt, washer and nut as shown. Ensure the bolt head fits into the valley of the tile or roof sheet profile.
All plumbing work must be carried out by a qualified person and in accordance with the requirements of the Standard AS/NZS 3500.4, and all local codes and regulatory authority requirements. In New Zealand, the installation must conform to Clause G12 of the New Zealand Building Code.

**Warning:** Certain types of plastic pipe, such as Poly-butylene pipe, are not suitable to be used as a hot water pipe between:

- this water heater and a temperature limiting device, and
- this water heater and a hot water outlet if a temperature limiting device is not installed.

This water heater can produce water at a temperature and pressure which can exceed the performance limits of these types of pipe. This may result in pipe failure leading to severe water damage to the property. If one of these types of plastic pipe is used as a hot water pipe in the property, then a temperature limiting device must be installed between the water heater and this pipe work.

**Note:** The solar storage tank of a solar water heater should not be installed as part of a circulated hot water flow and return system in a building. The benefits of solar gain will be significantly reduced and energy gained from the sun lost through the pipe work. If a circulated flow and return system is required, it is necessary to connect the return line after the solar storage tank and prior to the in-series water heater supplied from the solar water heater. Refer to “Circulated Hot Water Flow and Return System” on page 22.

**CONNECTION SIZES**

- Hot water connection: G 1/2 M olive.
- Cold water connection: Rp 3/4.
- Relief valve connection: Rp 1/2.

**WATER INLET AND OUTLET**

All pipe work must be cleared of foreign matter before connection and purged before attempting to operate the water heater. All olive compression fittings must use brass or copper olives. Use thread sealing tape or approved thread sealant on all other but the conetite or O-ring fittings of the solar collectors.

An isolation valve, non-return valve and expansion control valve must be installed on the cold water line to the water heater. An acceptable arrangement is shown in the diagram and on page 47 for multiple installations. Refer also to “Hot Water Delivery” on page 21 and to “Mains Water Supply” on page 20.

The cold water isolation valve and expansion control valve must be accessible from ground or floor level. They must not be installed either on the roof or in the ceiling space, unless it is an accessible trafficable area. Extend the cold water line to the cold water inlet fitting on the solar storage tank.

A disconnection union must always be provided at the cold water inlet and hot water outlet of the water heater to allow for disconnection of the water heater.

This water heater has either a plastic stratifier or dip tube in the inlet and outlet fittings (see diagram). These must be in place for the water heater to function properly. Do not remove or damage them by using heat nearby.

The pipe work from the hot water outlet **must not** be installed in front of or prevent access to the electrical cover of the water heater.
Exposed pipe work between the solar storage tank and the penetrations through the roofing material should be kept to a minimum to maintain the aesthetics of the installation.

Pipes must not be installed in direct contact with metal roofs. Where it is necessary to run piping across a metal roof, it must be fixed above the roof and surrounded with a weatherproof insulation of a minimum thickness in accordance with Clause 4.12.3 of AS/NZS 3500.4. The insulation must be UV resistant if exposed. The insulation is to assist in freeze protection and to protect the metal roof against corrosion by water runoff over the copper pipe. Consideration should be made for thermal expansion and contraction of the roof material.

**Note:** Penetrations through the roofing material must be:

- at the high point of the roof tile or metal sheet;
- made neatly and kept as small as practicable;
- waterproofed upon installation of the hot and cold pipes.

**PIPE SIZES**

To achieve true mains pressure operation, the cold water line to the water heater should be the same size or bigger than the hot water line from the water heater.

The pipe sizing for hot water supply systems should be carried out by persons competent to do so, choosing the most suitable pipe size for each individual application. Reference to the technical specifications of the water heater and local regulatory authority requirements must be made.

Pipe work, including that within the roof space, is to be securely fixed to prevent vibration.

**IN-SERIES BOOSTER (IF INSTALLED)**

The pipe work between the solar storage tank and an in-series booster has a minimum recommended pipe size of DN20, **MUST BE** of copper and be fully insulated with a closed cell type insulation or equivalent and in accordance with the requirements of AS/NZS 3500.4.

The insulation must be weatherproof and UV resistant if exposed. The insulation must be fitted up to the connections on both the solar storage tank and the in-series booster.

An isolation valve must be installed on the water line to the in-series booster. The isolation valve must be of a full flow type if the in-series booster is a continuous flow water heater.

**TEMPERATURE PRESSURE RELIEF VALVE**

The temperature pressure relief valve is supplied in the pipe kit. The temperature pressure relief valve must be fitted to the end of the hot water outlet Tee before the water heater is operated. Before fitting the relief valve, make sure the probe has not been bent. Seal the thread with Teflon tape - never hemp. Make sure the tape does not hang over the end of the thread.

Screw the valve into the correct opening (refer to the installation diagrams on pages 25 to 26) leaving the valve drain pointing downwards but to the rear of the tank. Do not use a wrench on the valve body - use the spanner flats provided. A copper drain line must be fitted to the temperature pressure relief valve (refer to "Relief Valve Drain" on page 43).

The valve must be insulated with closed cell polymer insulation or similar (minimum thickness 9 mm) and the insulation installed so as not to impede the operation of the valve. The insulation must be weatherproof and UV resistant if exposed.
EXPANSION CONTROL VALVE
An expansion control valve is supplied in the pipe kit and must be installed. Install the expansion control valve using a brass Tee, brass union and brass nipple on the cold water line to the water heater.

The expansion control valve must always be installed after the non-return valve and be the last valve installed prior to the water heater (refer to diagrams on page 41). A copper drain line must be fitted to the expansion control valve (refer to “Relief Valve Drain” on page 43).

The expansion control valve and its easing gear must be accessible from ground or floor level. It must not be installed either on the roof or in the ceiling space, unless it is an accessible trafficable area. Extend the cold water line from the expansion control valve to the cold water inlet fitting on the water heater.

The valve, if installed within 500 mm of the water heater, must be insulated with closed cell polymer insulation or similar (minimum thickness 9 mm) and the insulation installed so as not to impede the operation of the valve. The insulation must be weatherproof and UV resistant if exposed.

RELIEF VALVE DRAIN
DN15 copper drain lines must be fitted to the temperature pressure relief valve and expansion control valve to carry the discharge clear of the water heater. Connect the drain lines to the valves using disconnection unions. The drain line from the valve to the point of discharge should be as short as possible, have a continuous fall all the way from the water heater to the discharge outlet and have no tap, valves or other restrictions in the pipe work.

A drain line from a relief valve must comply with the requirements of AS/NZS 3500.4. A drain line must be no longer than 9 metres with no more than three bends greater than 45° before discharging at an outlet or air break. The maximum length of 9 metres for a drain line is reduced by 1 metre for each additional bend required of greater than 45°, up to a maximum of three additional bends. Where the distance to the point of final discharge exceeds this length, the drain line can discharge into a tundish.

Subject to local regulatory authority approval, the drain lines from the temperature pressure relief valve and expansion control valve from an individual water heater may be interconnected.

The outlet of a drain line should not discharge onto roofing materials, roof gutters or onto paved areas. It must be in such a position that flow out of the pipe can be easily seen, but arranged so discharge will not cause injury, damage or nuisance. The termination point of a drain line must comply with the requirements of AS/NZS 3500.4. Drain lines must not discharge into a safe tray.

In locations where water pipes are prone to freezing, drain lines must be insulated, must not exceed 300 mm in length and are to discharge into a tundish through an air gap of between 75 mm and 150 mm.

If a drain line discharges into a tundish, the drain line from the tundish must be not less than DN20. The drain line from a tundish must meet the same requirements as for a drain line from a relief valve.

Where a drain line crosses over a metal roof, the pipe work must be fully insulated with weatherproof lagging to offer corrosion protection to the metal roof against water runoff over the copper pipe. The insulation must be UV resistant if exposed.

For multiple installations the drain lines from several water heaters can discharge into a common tundish (refer to “Multiple Installations” on pages 46 and 47).

⚠️ Warning: As the function of the temperature pressure relief valve on this water heater is to discharge high temperature water under certain conditions, it is strongly recommended the pipe work downstream of the relief valve be capable of carrying water exceeding 93°C. Failure to observe this precaution may result in damage to pipe work and property.
The power supply to the water heater must not be switched on until the water heater is filled with water and a satisfactory megger reading is obtained.

All electrical work and permanent wiring must be carried out by a qualified person and in accordance with the Wiring Rules AS/NZS 3000 and all local codes and regulatory authority requirements.

If this water heater is installed with an in-series booster, then the electric booster heating unit will not need to be connected to a power supply and the references to the electric booster heating unit, thermostat and boosting controls in these installation instructions will not be applicable to the installation.

Note: AS 3498 requires that a water heater provides the means to inhibit the growth of Legionella bacteria in potable water. This water heater can satisfy this AS 3498 requirement provided, where an in-series booster water heater is not installed, the electric booster is energised for a sufficient period each day and the electric booster thermostat setting is 60°C.

SOLAR STORAGE TANK
The solar storage tank with an electric booster heating unit must be directly connected to a 240 V AC 50 Hz mains power supply with an isolating switch installed at the switchboard.

A flexible 20 mm conduit is required for the electrical cable to the solar storage tank. The conduit is to be connected to the unit with a 20 mm terminator. Connect the power supply wires directly to the terminal block and earth tab connection, ensuring there are no excess wire loops inside the front cover.

The water heater is more suited for the booster heating unit to be connected to either a continuous, or a time of use, or an extended Off-Peak (overnight and day) electricity supply. A timer can also be used to control the boosting periods and help maximise solar savings. Refer to “Booster Control” on page 45.

The booster heating unit may be connected to an Off-Peak (overnight) electricity supply, however this will only allow the booster to heat the water overnight. If this type of connection is considered, care must be taken to ensure there is sufficient boost capacity to meet the household’s full day and night’s hot water supply during periods of no or low solar gain, particularly in cold weather. Temperature redistribution (refer to page 16) is more evident with this type of electricity supply connection and its implications should be discussed with the householder.

Discuss the power supply and hot water usage requirements with the householder.

If water and / or power are not available on completion of installation, leave the isolation switch in the meter box in the off position and place a warning label “Do not turn on electricity until the water heater is filled with water and the water heater has been commissioned” on the electrical isolating switch.

THERMOSTAT SETTING
The thermostat is adjustable from 60°C to 70°C. The thermostat is adjusted by turning the adjuster anticlockwise to decrease the temperature setting and clockwise to increase the temperature setting. Only adjust the temperature setting when the isolating switch is switched off at the switchboard.

For reasons of safety and economy, we advise the thermostat be set at the lowest temperature that will provide sufficient hot water during periods when boosting is required. Rheem recommends the thermostat is set at 60°C to maximise solar contribution. Discuss the thermostat setting requirements with the householder.

The thermostat has a safety cut-out (also called an over-temperature energy cut-out) that will de-energise the element should the temperature within the tank reach 83°C whilst the element is activated. This safety cut-out is not resettable. This cut-out is of a type that will not activate due to solar heating of the water in the storage tank above this temperature whilst the element is not energised.
BOOSTER CONTROL
The isolating switch installed in the electrical meter box for the solar storage tank should be left switched on.

Leaving the isolating switch switched on will also provide a sufficient period of time each day for the booster heating unit to operate, if required, to satisfy the requirements of AS 3498.

Timer Control Switch
A suitably rated timer control switch can be installed and will help maximise energy savings with an electrically boosted solar water heater connected to a continuous, time of use or extended Off-Peak (overnight and day) electricity supply.

If used with an extended Off-Peak (overnight and day) electricity supply, the timer switch should:

- be operated by a continuous power supply on its own circuit from the switchboard with the booster heating unit operated by the Off-Peak power supply.

  A double pole isolating switch is required to be installed at the switchboard to simultaneously isolate both circuits.

  or

- be of a type which has an internal rechargeable battery to keep time when the power supply is not available to the timer.

Refer to “Booster Control” on page 7 for information on programming the timer.

TIMER CONTROL SWITCH WIRING DIAGRAM
MULTIPLE INSTALLATIONS

A multiple installation of Rheem solar Premier Hiline water heaters on a single manifold or multiple manifolds is possible, using the Rheem Equa-Flow® manifold system, where large volumes of hot water are required.

The system may be installed with the solar water heaters as preheaters and their electrical heating units not be connected to a power supply. Rheem commercial or heavy duty water heaters should be installed in series with the solar water heaters to boost the water temperature during periods of poor or no solar gain.

Alternatively, the solar water heaters can be installed with their heating units connected to a power supply and without in series booster water heaters.

The cold water and hot water manifolds must be designed to balance the flow from each solar storage tank. To achieve this, there are basic installation requirements and principles which must be followed:

1. The maximum number of solar storage tanks in a bank should be 5, however several banks of solar storage tanks can be installed.
2. The hot water line from the manifold must leave from the opposite end to which the cold water line enters the manifold.
3. The solar storage tanks must be of the same model.
4. The cold water line, cold and hot water headers and hot water line must be sized to meet the requirements of both AS/NZS 3500.4 and the application.
5. A non-return valve, isolation valve and if required a pressure limiting valve and expansion control valve, must be installed on the cold water line to the system.
6. A full flow gate valve or ball valve (not stop taps, as used on a single solar storage tank installation) must be installed on both the cold water branch and hot water branch of each solar storage tank.
7. Non-return valves or pressure limiting valves must not be installed on the branch lines to the solar storage tanks.
8. All fittings, valves and branch lines must be matched sets all the way along the manifold.
9. Sufficient space must be left to enable access, servicing or removal of each solar storage tank.
10. The temperature pressure relief valve drain line from each solar storage tank can terminate at a common tundish (funnel) with a visible air break at each drain discharge point (refer to the diagram on page 47 and to “Relief Drain Line” on page 43).

Refer to the diagram on page 47 for installation and plant layout details.
RHEEM COMMERCIAL SOLAR PREMIER HILINE – DOUBLE ARRAY

NOTES:
1. ENSURE ALL INSTALLATION PRACTICES CONFORM TO THE REQUIREMENTS OF THE LOCAL AUTHORITIES.
2. MAXIMUM ANGLE OF INCLINATION OF SOLAR RHEEM SYSTEMS IS 15°
3. MAXIMUM THERMAL PIPING TURNS IN A BANK IS 3. MULTIPLE BANKS CAN BE INSTALLED.
4. MAXIMUM NUMBER OF BOOSTER HEATERS IN A BANK IS 3. MULTIPLE BANKS CAN BE INSTALLED.

FIX ALL PIPES SECURELY IN POSITION CENTRALLY OVER TUNNEL

TPR Valve Drain Line
Common Discharge Point
COMMISSIONING

TO FILL AND TURN ON THE WATER HEATER
The power supply to the solar storage tank must not be switched on until the water heater is filled with water and a satisfactory megger reading is obtained.

- Open all of the hot water taps in the house (don’t forget the shower).
- Open the isolation valves fully on the cold and hot water branches to the water heater(s) in a bank.
- Open the cold water isolation valve fully on the cold water line to the water heater(s).
  Air will be forced out of the taps.
- Close each tap as water flows freely from it.
- Check the pipe work for leaks.
- Fill the closed circuit heat exchanger and solar collectors. Refer to “Closed Circuit Fluid” on page 49.
  A commissioning kit is available from Rheem for the purpose of filling the closed circuit. Contact Rheem or your local Rheem Solar Water Heater Distributor for details.
- Switch on the electrical supply to the solar storage tank(s) at the isolating switch.
- Set the timer if one is installed (refer to “Booster Control” on page 7).
- Prior to explaining to the householder or a responsible officer the functions and operation of the water heater, complete the Installation Check List. Refer to “Installation Check List” on page 52.

Explain to the householder or a responsible officer the functions and operation of the water heater and the timer if one is installed. Upon completion of the installation and commissioning of the water heater, leave this guide with the householder or responsible officer.

TO TURN OFF THE WATER HEATER
If it is necessary to turn off the water heater on completion of the installation, such as on a building site or where the premise is vacant, then:

- Ensure the collectors are covered with an opaque material,
- Switch off the electrical supply to the solar storage tank(s) at the isolating switch,
- Close the cold water isolation valve at the inlet to the water heater(s) to shut down the entire system, or;
- Close the isolation valves on the cold and hot water branches to shut down an individual water heater in a bank.
CLOSED CIRCUIT FLUID

The solar collectors and tank heat exchanger jacket are connected together to create a sealed, closed circuit that is entirely separate from the potable water in the storage cylinder. The circuit is filled with a heat transfer fluid concentrate and water. Under no circumstances can any fluids other than provided by Rheem be used as the heat transfer fluid concentrate. Only potable water can be used in conjunction with the heat transfer fluid concentrate.

Only trained and qualified installers are permitted to fill the closed circuit.

Important: The solar storage tank must be filled with water and the collectors must be covered with an opaque material before charging the solar heat exchanger and collectors with the closed circuit fluid. Covering the collectors keeps them cooler and prevents solar gain and heating of the closed circuit fluid during the commissioning procedure.

Mix the required quantity of heat transfer fluid concentrate with the correct quantity of water to achieve the correct closed circuit fluid for the system. Failure to mix the closed circuit fluid correctly may void the Rheem warranty.

Closed Circuit Fluid Composition

The volume of heat transfer fluid concentrate to be used in the closed circuit of each system is given in the table below.

The heat transfer fluid concentrate is supplied a 4.5 litre bottle. A minimum of one (1) complete 4.5 litre bottle of concentrate shall be used in each system as standard where the ambient temperature does not fall below -7°C. Alternatively, the volume of heat transfer fluid concentrate in the closed circuit should be increased to suit the minimum ambient temperature that the system may be exposed to as given in the table below.

<table>
<thead>
<tr>
<th>Tank Model</th>
<th>Number of Collectors</th>
<th>Closed Circuit Volume</th>
<th>4.5 litre* heat transfer fluid concentrate</th>
<th>-7°C (18°F) 20% fluid concentrate</th>
<th>-13°C (7°F) 30% fluid concentrate</th>
<th>-22°C (-8°F) 40% fluid concentrate</th>
<th>-34°C (-29°F) 50% fluid concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>52C180</td>
<td>1 x S200</td>
<td>13.4</td>
<td>34%</td>
<td>2.7</td>
<td>4.0</td>
<td>5.4</td>
<td>6.7</td>
</tr>
<tr>
<td>52C300</td>
<td>2 x S200</td>
<td>19.2</td>
<td>23%</td>
<td>3.8</td>
<td>5.8</td>
<td>7.7</td>
<td>9.6</td>
</tr>
<tr>
<td>52C180</td>
<td>1 x NPT200</td>
<td>11.6</td>
<td>39%</td>
<td>2.3</td>
<td>3.5</td>
<td>4.6</td>
<td>5.8</td>
</tr>
<tr>
<td>52C300</td>
<td>2 x NPT200</td>
<td>15.6</td>
<td>29%</td>
<td>3.1</td>
<td>4.7</td>
<td>6.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Caution: Although the heat transfer fluid concentrate is of food grade and non toxic, care must be taken not to accidentally consume or spill any of the heat transfer fluid concentrate when handling. Only use approved heat transfer fluid concentrate. If required, a Material Safety Data Sheet can be sought from Rheem.

While the heat transfer fluid concentrate is non toxic to humans, it does have an adverse effect on water stored in rainwater tanks. It can cause an unpleasant odour to develop and result in the rainwater tank having to be drained and cleaned. Refer to “Rainwater Collection System” on page 20.

⚠️ Warning: Although non-toxic, the following first aid advice and procedures should be followed if the heat transfer fluid concentrate comes into human contact or is spill:

- **Swallowed** - give milk or water and seek medical attention.
- **Eyes** – flush with flowing lukewarm water.
- **Skin** - remove contaminated clothing and wash skin with water and soap.
- **Inhaled** - seek fresh air, rest and keep warm.
- **Spilt** - immediately remove contaminated clothing, stop leak source, absorb with a dry agent and eliminate any ignition sources nearby.
To Fill The Closed Circuit
It is necessary to fill the heat exchanger and solar collectors with closed circuit fluid before the water heater can be operated and solar contribution achieved. Ensure the collectors are covered with an opaque material.

Note: Care must be taken to ensure there is no spillage of the closed circuit fluid onto the roof surface. Any spilled closed circuit fluid must be cleaned up immediately and the roof surface cleaned of any fluid residue.

To fill the heat exchanger:

1. Remove the Fill Plug from the Fill Assembly. Remove PR6 relief valve from the Tank. Connect a ½” hose to the Fill Assembly and fill the closed circuit with water (hose to be supplied by installer).

2. Continue filling until water overflows from the jacket relief valve port and there are no air bubbles in the overflowing water.

3. Fit the Test Block and pressure gauge (from the commissioning kit) into the jacket relief valve port.

4. Fit the PR6 relief valve to the Test Block.

5. Remove the hose from the Fill Assembly and replace the Fill Plug as quickly as possible to minimise water spillage.

Important: If more than 0.5 litres of water is spilled, repeat steps 1-5.

6. Connect a bicycle pump / portable compressor to the Test Block and pressurise the closed circuit until a pressure of 80kPa is read on the pressure gauge or the PR6 relief valve opens, whichever occurs first. Remove the bicycle pump / portable compressor from Test Block.

⚠️ Warning: Do not allow the closed circuit pressure to rise above 80kPa or permanent system damage may occur.

7. If the PR6 relief valve opens during the pressure test, wait until the valve re-seals before checking all connections for leaks. If the valve does not open during the pressure test then check all connections for any evidence of leakage.

8. Ensure that the closed circuit pressure remains stable for at least 10 minutes.

9. If any leakage is observed at any of the connections, rectify the problem and repeat steps 1 to 8.

10. Release the pressure from the closed circuit by removing the PR6 relief valve from the Test Block. Once the pressure is relieved, replace PR6 relief valve.

11. Remove the Fill Plug from the Fill Assembly and connect the ½” hose as quickly as possible to minimise water spillage.
**Important:** If more than 0.5 litres of water is spilled, repeat steps 1-5.

- Remove the PR6 relief valve and siphon the entire contents of the heat transfer fluid concentrate container into the closed circuit using the ½" hose connected to the Fill Assembly.  

12

- Water will flow from the PR6 relief valve port during this operation (4.5 litres for each container).

13

- When the container is empty, flush approx 1 litre of clean water through the hose into the collector to ensure all of the heat transfer fluid concentrate has been siphoned into the system. Refit the PR6 relief valve to the Test Block.

14

- Remove the hose from the Fill Assembly and screw in the Fill Plug as quickly as possible to minimise fluid spillage.

15

**Note:** Placing an absorbent cloth on the roof under the Fill Assembly prior to removing the hose will assist in catching any spilt closed circuit fluid.

**Important:** If more than 0.5 litres of fluid is spilled, repeat steps 1-5.

- Connect a bicycle pump / portable compressor to the Test Block and pressurise the closed circuit until a pressure of 80kPa is read on the pressure gauge or the PR6 relief valve opens, whichever occurs first. Ensure there is no leak at the Fill Assembly. Remove the bicycle pump / portable compressor from Test Block.

16

- Ensure that the pressure remains stable for at least 10 minutes.

17

- Release the pressure from the closed circuit by removing the PR6 relief valve from the Test Block.

18

- Remove the Test Block from the tank.

19

- Fit the PR6 relief valve to the jacket relief valve port.

20

The closed circuit system is now ready for operation.

If the system is ready to be put into operation, remove the solar collector packaging. This must be removed completely prior to the permanent operation of the water heater.

The closed circuit fluid contains food grade additives (rust inhibitor, anti-freeze agent, colour) and is harmless to the environment. However, it is good practice to recover any excess closed circuit fluid and remove from site. It is important to prevent any of the closed circuit fluid or heat transfer fluid concentrate from getting into a rainwater collection system.
INSTALLATION CHECKLIST
Prior to handover, complete the final check list:

1. System is installed as per the installation instructions .................................................................[ ]
2. Potable water is connected, turned on and solar storage tank is filled ...........................................[ ]
3. Closed circuit is filled with correct concentration of fluid and has been commissioned .................[ ]
4. All mechanical fixings are secured ................................................................................................[ ]
5. Collectors have correct kick (12-15 mm per collector) ...................................................................[ ]
6. Protective plastic film removed from tank (if fitted) .........................................................................[ ]
7. Covers removed from collectors .....................................................................................................[ ]
8. Pipe, conduit penetrations through the roof have been sealed correctly ........................................[ ]
9. Roof tiles put back into position ......................................................................................................[ ]
10. Roof flashing watertight ................................................................................................................[ ]
11. System checked for water (and heating fluid) leaks and pipe connections are correctly tightened ..[ ]
12. Cold and hot water piping checked for water leaks ......................................................................[ ]
13. Drain pipes free of any obstruction .................................................................................................[ ]
14. All pipe work clipped where necessary .........................................................................................[ ]
15. Electrical power to the booster is switched on (if required) ............................................................[ ]
16. Operation of booster checked ........................................................................................................[ ]
17. Air bled from taps .............................................................................................................................[ ]
18. Owner has been instructed on use and has been given this booklet .............................................[ ]
DRAINING THE CLOSED CIRCUIT FLUID

It is recommended to drain the solar collectors and heat exchanger every five years. The closed circuit fluid should be checked and if necessary replaced. Draining the solar collectors and closed circuit should be conducted within three hours of sunrise, when the closed circuit fluid temperature inside the solar collectors is lower.

To drain the solar collectors and closed circuit:

- Cover the solar collectors with an opaque material to prevent solar radiation gain.
  
  Failure to do so may cause a safety issue.

- Open a hot water tap and allow the water to run for five minutes immediately prior to draining the solar storage tank.
  
  This will assist in the transfer of any heat from high temperature closed circuit fluid in the solar collectors to the water in the solar storage tank.

- Close the hot water tap.

⚠️ **Warning:** Exercise care to avoid splashing of closed circuit fluid, as fluid discharged from the solar collectors may be of a very high temperature.

**Note:** The closed circuit fluid discharged from the solar collectors can render the water in a rainwater tank unusable and should be diverted away from any rainwater tank connected to the roof.

- Very carefully, unscrew the closed circuit relief valve on the left side of the solar storage tank to relieve the pressure from the closed circuit.
  
  ⚠️ **Warning:** Relieved air or closed circuit fluid may be hot.

- Refit and tighten the closed circuit relief valve.

- Remove the screw from the fill plug assembly and attach a hose to the assembly.
  
  Place the end of the hose into a container.

  Placing an absorbent cloth on the roof under the fill plug assembly prior to removing the screw will assist in catching any spilt closed circuit fluid.

- Unscrew the closed circuit relief valve to allow the closed circuit fluid to flow from the hose attached to the Fill Plug Assembly.

- Allow the closed circuit fluid to drain into a container and dispose of in accordance with the relevant local authority.
  
  ⚠️ **Warning:** Closed circuit fluid may be hot.

- Refit and tighten the closed circuit relief valve on the left side of the solar storage tank.

To fill the solar collectors and closed circuit, refer to “To Fill The Closed Circuit” on page 50.
DRAINING AND FLUSHING THE SOLAR STORAGE TANK

It may be necessary to drain the storage tank or flush the storage tank if there is sediment in the water supply. This should be conducted in the morning, within three hours of sunrise, when the closed circuit fluid temperature inside the solar collectors is lower.

- Cover the solar collectors with an opaque material to prevent solar radiation gain and the transfer of heat to the solar storage tank.
  
  Failure to do so may cause a safety issue.
- Open a hot water tap and allow the water to run for five minutes immediately prior to draining the solar storage tank.
  
  This will assist in the transfer of any heat from high temperature closed circuit fluid in the solar collectors to the water in the solar storage tank.
- Close the hot water tap.

⚠️ Warning: Exercise care to avoid splashing of water, as water discharged from the solar storage tank may be of a very high temperature.

Note: The water discharged from the solar storage tank may contain sediments and should be diverted away from any rainwater tank connected to the roof.

To drain the solar storage tank:
- Turn off the water heater (refer to “To Turn Off the Water Heater” on page 48).
- Close all hot water taps.
- Very carefully, unscrew the closed circuit relief valve on the left side of the solar storage tank to relieve the pressure from the closed circuit.
  
  ⚠️ Warning: Relieved air or closed circuit fluid may be hot.
- Operate the temperature pressure relief valve release lever on the left hand side of the solar storage tank - do not let the lever snap back or you will damage the valve seat.
  
  Operating the lever will release the pressure in the solar storage tank.
- Undo the union at the cold water inlet to the solar storage tank and attach a hose.
  
  Let the other end of the hose go to a drain.
- Operate the relief valve again.
  
  This will let air into the solar storage tank and allow the water to drain through the hose.

To flush the solar storage tank:
After draining the solar storage tank, flush and hose inside the tank:
- Disconnect and remove the booster heating unit,
- Place a hose inside the tank,
- Open the isolation valve to the hose,
- Allow hose to run until water runs clear from the hose connected to the cold water connection,
- Close the isolation valve to the hose and remove the hose from the tank,
- Replace and reconnect the booster heating unit.

After the solar storage tank has been drained or flushed:
- Disconnect the hose from the cold water inlet and reconnect the cold water pipe work.
- Open the cold water isolation valve to the water heater fully, check fittings for leaks and switch on the power.
- Refit and tighten the closed circuit relief valve on the left side of the solar storage tank.

It is recommended to flush the solar storage tank every five years to assist in keeping the solar storage tank clear of sediment.
1. THE RHEEM WARRANTY – GENERAL

1.1 This warranty is given by Rheem Australia Pty Limited ABN 21 098 823 511 of 1 Alan Street, Rydalmere New South Wales.

1.2 Rheem offer a trained and qualified national service network who will repair or replace components at the address of the water heater subject to the terms of the Rheem warranty. Rheem Service, in addition can provide preventative maintenance and advice on the operation of your water heater. The Rheem Service contact number is available 7 days a week on 131031 with Service personnel available to take your call from 8am to 8pm daily (hours subject to change).

1.3 For details about this warranty, you can contact us on 131031 or by email at warrantyenquiry@rheem.com.au (not for service bookings).

1.4 The terms of this warranty and what is covered by it are set out in sections 2 and 3 and apply to water heaters manufactured after 1st March 2014.

1.5 If a subsequent version of this warranty is published, the terms of that warranty and what is covered by it will apply to water heaters manufactured after the date specified in the subsequent version.

2. TERMS OF THE RHEEM WARRANTY AND EXCLUSIONS TO IT

2.1 The decision of whether to repair or replace a faulty component is at Rheem’s sole discretion.

2.2 If you require a call out and we find that the fault is not covered by the Rheem warranty, you are responsible for our standard call out charge. If you wish to have the relevant component repaired or replaced by Rheem, that service will be at your cost.

2.3 Where a failed component or cylinder is replaced under this warranty, the balance of the original warranty period will remain effective. The replacement does not carry a new Rheem warranty.

2.4 Where the water heater is installed outside the boundaries of a metropolitan area as defined by Rheem or further than 25 km from either a regional Rheem branch office or an Accredited Rheem Service Agent’s office, the cost of transport, insurance and travelling between the nearest branch office or Rheem Accredited Service Agent’s office and the installed site shall be the owner’s responsibility.

2.5 Where the water heater is installed in a position that does not allow safe or ready access, the cost of that access, including the cost of additional materials handling and/or safety equipment, shall be the owner’s responsibility. In other words, the cost of dismantling or removing cupboards, doors or walls and the cost of any special equipment to bring the water heater to floor or ground level or to a serviceable position is not covered by this warranty.

2.6 This warranty only applies to the original and genuine Rheem water heater in its original installed location and any genuine Rheem replacement parts.

2.7 The Rheem warranty does not cover faults that are a result of:

a) Accidental damage to the water heater or any component (for example: (i) Acts of God such as floods, storms, fires, lightning strikes and the like; and (ii) third party acts or omissions).

b) Misuse or abnormal use of the water heater.

c) Installation not in accordance with the Owner’s Guide and Installation Instructions or with relevant statutory and local requirements in the State or Territory in which the water heater is installed.

d) Connection at any time to a water supply that does not comply with the water supply guidelines as outlined in the Owner’s Guide and Installation Instructions.

e) Repairs, attempts to repair or modifications to the water heater by a person other than Rheem Service or a Rheem Accredited Service Agent.

f) Faulty plumbing or faulty power supply.

g) Failure to maintain the water heater in accordance with the Owner’s Guide and Installation Instructions.

h) Transport damage.

i) Fair wear and tear from adverse conditions (for example, corrosion).

j) Cosmetic defects.

k) Breakage of collector glass for any reason including hail damage (we suggest that the collector glass be covered by your home insurance policy).

l) Ice formation in the waterways of an indirect closed circuit thermosiphon system due to non Rheem approved or incorrectly mixed closed circuit fluid being used.

m) Non Rheem approved or incorrectly mixed closed circuit fluid being used or incorrect or insufficient filling of the closed circuit system with the closed circuit fluid.

2.8 Subject to any statutory provisions to the contrary, this warranty excludes any and all claims for damage to furniture, carpet, walls, foundations or any other consequential loss either directly or indirectly due to leakage from the water heater, or due to leakage from fittings and/ or pipe work of metal, plastic or other materials caused by water temperature, workmanship or other modes of failure.

2.9 If the water heater is not sized to supply the hot water demand in accordance with the guidelines in the Rheem water heater literature, any resultant fault will not be covered by the Rheem warranty.
3. WHAT IS COVERED BY THE RHEEM WARRANTY FOR THE WATER HEATERS DETAILED IN THIS DOCUMENT

3.1 Rheem will repair or replace a faulty component of your water heater if it fails to operate in accordance with its specifications as follows:

<table>
<thead>
<tr>
<th>What components are covered</th>
<th>The period from the date of installation in which the fault must appear in order to be covered</th>
<th>What coverage you receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>All components</td>
<td>Year 1</td>
<td>Repair and/or replacement of the faulty component, free of charge, including labour.</td>
</tr>
<tr>
<td>The cylinder</td>
<td>Years 2 &amp; 3</td>
<td>Repair and / or replacement of the cylinder, free of charge, including labour.</td>
</tr>
<tr>
<td>(if the water heater is installed in a single-family domestic dwelling)</td>
<td>Years 4 &amp; 5</td>
<td>Replacement cylinder, free of charge. Installation and repair labour costs are the responsibility of the owner.</td>
</tr>
<tr>
<td>The cylinder</td>
<td>Years 2 &amp; 3</td>
<td>Replacement cylinder, free of charge. Installation and repair labour costs are the responsibility of the owner.</td>
</tr>
<tr>
<td>(if the water heater is not installed in a single-family domestic dwelling)</td>
<td>Years 2 to 5</td>
<td>Replacement solar collector, free of charge. Installation and repair labour costs are the responsibility of the owner.</td>
</tr>
</tbody>
</table>

4. ENTITLEMENT TO MAKE A CLAIM UNDER THIS WARRANTY

4.1 To be entitled to make a claim under this warranty you need to:
   a) Be the owner of the water heater or have consent of the owner to act on their behalf.
   b) Contact Rheem Service without undue delay after detection of the defect and, in any event, within the applicable warranty period.

4.2 You are not entitled to make a claim under this warranty if your water heater:
   a) Does not have its original serial numbers or rating labels.
   b) Is not installed in Australia.

5. HOW TO MAKE A CLAIM UNDER THIS WARRANTY

5.1 If you wish to make a claim under this warranty, you need to:
   a) Contact Rheem on 131031 and provide owner\'s details, address of the water heater, a contact number and date of installation of the water heater or if that\'s unavailable, the date of manufacture and serial number (from the rating label on the water heater).
   b) Rheem will arrange for the water heater to be tested and assessed on-site.
   c) If Rheem determines that you have a valid warranty claim, Rheem will repair or replace the water heater in accordance with this warranty.

5.2 Any expenses incurred in the making of a claim under this warranty will be borne by you.

6. THE AUSTRALIAN CONSUMER LAW

6.1 Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and for compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

6.2 The Rheem warranty (set out above) is in addition to any rights and remedies that you may have under the Australian Consumer Law.